Open and Closed sets **Interior Point:** Let $S \in \mathbb{R}$ and $a \in S$. Then a is called an interior point of S if $\exists \epsilon > 0$ $N_{\epsilon}(a) \subseteq S$. **Example 1:** Show that $\frac{1}{3}$ is an interior point of [0,1]. **Proof:** Since, $\frac{1}{3} \in [0,1]$, and choose $\epsilon = \min\left\{\frac{1}{3} - 0, 1 - \frac{1}{3}\right\}$. Then, $\left(\frac{1}{3} - \epsilon, \frac{1}{3} + \epsilon\right) \subseteq [0,1]$. Thus, $\exists \epsilon > 0$, $N_{\epsilon}(\frac{1}{3}) \subseteq [0,1]$. Therefore, $\frac{1}{3}$ is an interior point [0,1]. \square **Example 2:** Show that 1 is not an interior point of [0,1]. **Proof:** If 1 is an interior point of $[0,1] \implies \exists \epsilon > 0, N_{\epsilon}(1) \subseteq [0,1].$ Negation of the above statement is: 1 is not an interior point of $[0,1] \implies \forall \epsilon > 0, N_{\epsilon}(1) \not\subseteq [0,1].$ Now, let $\epsilon > 0$ be arbitrary. Then $y = 1 + \frac{\epsilon}{2} \in N_{\epsilon}(1)$, however, $y \notin [0,1]$. Therefore, $N_{\epsilon}(1) \not\subseteq [0,1]$. As $\epsilon > 0$ is arbitrary, therefore, $\forall \epsilon > 0$, $N_{\epsilon}(1) \not\subseteq [0,1]$. Thus 1 is not an interior point of [0,1]. \square **Boundary Point:** Let $S \in \mathbb{R}$ and $a \in \mathbb{R}$. Then a is called a boundary point of S if $\forall \epsilon > 0$ $N_{\epsilon}(a) \cap S \neq \Phi$ and $N_{\epsilon}(a) \cap S^{c} \neq \Phi$. **Example 3:** Show that 1 is a boundary point of [0,1). **Proof:** We have to show, $\forall \epsilon > 0$, $N_{\epsilon}(1) \cap [0,1) \neq \Phi$, and $N_{\epsilon}(1) \cap [0,1)^{c} \neq \Phi$. Take any $\epsilon > 0$, first shall show that, $N_{\epsilon}(1) \cap [0,1) \neq \Phi$ *i.e.* $\exists y \in N_{\epsilon}(1) \cap [0,1)$. Choose, $y = \max\left\{0, 1 - \frac{\epsilon}{2}\right\}$, then $y \in N_{\epsilon}(1)$ and $y \in [0,1)$. Thus, $N_{\epsilon}(1) \cap [0,1) \neq \Phi$. Now, we shall show that, $N_{\epsilon}(1) \cap [0,1)^c \neq \Phi$. Choose, $z = 1 + \frac{\epsilon}{2}$, then $z \in N_{\epsilon}(1)$ but $z \notin [0,1) \implies z \in [0,1)^c$. Therefore, $N_{\epsilon}(1) \cap [0,1)^c \neq \Phi$. Thus 1 is a boundary point of [0,1). \square **Interior of a Set:** The set \mathbb{S}^o of all interior points of a set S is called the interior of S. Open and Closed sets: Let $S \subseteq \mathbb{R}$. - 1. S is said to be Open if $\forall x \in S \ \exists \epsilon > 0 \ N_{\epsilon}(x) \subseteq S$. - 2. S is said to be Closed if and only if $\mathbb{R} \setminus S$ is open. **Example 4:** Show that (1,2) is open in \mathbb{R} . **Proof:** To show (1,2) is open in \mathbb{R} *i.e.* $\forall x \in (1,2) \exists \epsilon > 0$ $N_{\epsilon}(x) \subseteq (1,2)$. Let $x \in (1,2)$ be any arbitrary point. Now, see the above figure, We choose $\epsilon = \min\{x-1,2-x\} > 0$. We shall now prove that $N_{\epsilon}(x) \subseteq (1,2)$. Let, $y \in N_{\epsilon}(x)$. Then $y > x - \epsilon \ge x - x + 1 = 1$, as $\epsilon \le x - 1$ and $\epsilon \le 2 - x$. Also, $y < x + \epsilon \le x + 2 - x = 2$, as $\epsilon \le x - 1$ and $\epsilon \le 2 - x$. Therefore, $y \in (1,2) \implies N_{\epsilon}(x) \subseteq (1,2)$. Since, $x \in (1,2)$, therefore, $\forall x \in (1,2) \ \exists \epsilon > 0 \ N_{\epsilon}(x) \subseteq (1,2)$. \square **Example 5:** Show that \mathbb{S}^o is the largest open subset of $S \subseteq \mathbb{R}$. **Proof:** Case 1: If $\mathbb{S}^o = \Phi$, then the result is vacuously true. <u>Case 2</u>: If $\mathbb{S}^o \neq \Phi$, take any $a \in \mathbb{S}^o$. Therefore, a is an interior point of S i.e. $\exists \epsilon > 0$, $N_{\epsilon}(a) \subseteq S$. We choose this ϵ . We have to show $N_{\epsilon}(a) \subseteq \mathbb{S}^{o}$. Let, $x \in N_{\epsilon}(a)$, since $N_{\epsilon}(a)$ is open therefore, $\exists \delta > 0$ s.t. $N_{\delta}(x) \subseteq N_{\epsilon}(a) \subseteq S \implies x$ is an interior point of $S \implies x \in \mathbb{S}^o \implies N_{\epsilon}(a) \subseteq \mathbb{S}^o$. Therefore, \mathbb{S}^o is open. Now, we shall show \mathbb{S}^o is the largest open subset of S *i.e.* for any $A \subseteq S$ if A is open in \mathbb{R} , then we shall show $A \subseteq \mathbb{S}^o$. Take any $y \in A$, since A is open therefore, $\exists \epsilon > 0$, $N_{\epsilon}(y) \subseteq A \subseteq S \implies y \in \mathbb{S}^o$. Thus, $A \subseteq \mathbb{S}^o$. \square ## Exercises - 1. Prove that S is open $\iff \mathbb{S}^o = S$. - 2. Let $a \in \mathbb{R}$ - (a) Prove that $\{a\}$ is closed. - (b) Using part (a), prove that every finite set must be closed. - 3. Give an example of two sets A and B such that neither set is open but their union is open. - 4. Let $S = [0,1) \cap (1,2)$. Then what is \mathbb{S}^{o} ? - 5. Show that the set $$S=\{x\in\mathbb{R}:|x-1|+|x-2|<3\}$$ is an open set. [Last revised: July 11, 2020]