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A. Black – Body RADIATION 

Black- Body 

A perfectly black body is one which absorbs totally all the radiations of any 

wavelength which fall on it. 

Therefore, a black body does neither transmit nor reflect any radiation. 

Since, it neither reflects nor transmits any radiation it appears black whatever the 

colour of incident radiation may be. When such a body is heated it emits radiation 

of all possible wavelength.  

A perfectly black body is an ideal conception. Lamp black or Platinum black is 

nearest approach to a perfectly black body. Lamp black can absorb 96% of the 

radiation incident on it and Platinum black body absorbs about 98%. 

Black- Body Radiation 

When a black body is placed inside a uniform temperature enclosure, it will 

emit the full radiation of the enclosure after it is in equilibrium with the 

enclosure. These radiations are independent of nature of the substance, nature of 

the walls of the enclosure and presence of any other body in the enclosure but 

depends only on temperature. Such radiations in a uniform temperature 

enclosure are known as black-body radiations. 

Black-body radiation is also called temperature radiation. 

A black body in thermal equilibrium (that is, at a constant temperature) emits 

electromagnetic radiation called black-body radiation. 

An ideal black body in thermal equilibrium has two notable properties -   

1. It is an ideal emitter: at every frequency, it emits as much or more 

thermal radiative energy as any other body at the same temperature. 

2. It is a diffuse emitter: measured per unit area perpendicular to the 

direction, the energy is radiated isotopically, independent of direction. 

 

Example 

Some devices have been evolved which act as perfect black bodies. They are 

generally two types – one type commonly used for absorption experiments, is 

known as Ferry’s black body. 

The second type commonly used in emission experiments, is known as emission 

black body. 

https://en.wikipedia.org/wiki/Thermal_equilibrium
https://en.wikipedia.org/wiki/Black-body_radiation
https://en.wikipedia.org/wiki/Isotropic_radiator
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Ferry’s black body 

A cavity with walls made of any material, with a small opening, is an excellent black 

body. This is Ferry's black body. It also absorbs all electromagnetic radiation incident 

on it irrespective of wavelength.  

 

 

It consists of a double walled spherical metallic shell inside being lamp blacked 

and outside nickel polished. 

It has a small opening just opposite to which there is a small conical projection 

in the inner wall.  

The lamp black hastens to attain the constancy of temperature and the outer 

polish makes the enclosure impervious to heat. The projection prevents any 

direct reflection of rays back through the opening. 

  When any radiation enters the enclosure through the opening hole it suffers 

multiple reflections inside and is eventually absorbed so that practically no 

radiation comes out through the opening hole. Thus, it behaves as a perfect 

absorber. 

 

Some Fundamental Definition 

Electromagnetic radiations of all wavelength (zero to infinite) are emitted from 

the surface of a heated body in all directions.  

 

1) Emissive Power 

The emissive power is the amount of radiant energy emitted by a body per unit 

area of its surface normally into a unit solid angle per unit time. 
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eλ is the emissive power of the body. 

Let eλdλ the amount of radiation of wavelengths lying between λ and λ + dλ and 

emitted per unit area of the body per second, then 

        eλ dλ =  
𝑢𝜆 𝑑𝜆

𝑑𝑡 𝑑𝑤 𝑑𝐴
 

Where 𝑢𝜆 𝑑𝜆 is the energy radiated normally by the elementary area dA in the 

elementary solid angle dw in the element of time dt. 

So, the emissive power of a body is a function of wavelength. 

Total emittance or total emissive power (e): It is defined as the total amount of 

thermal energy emitted per unit time, per unit area of the body for all possible 

wavelengths. 

E = ∫ 𝑒
∞

0 λ dλ 

 

2) Absorptive Power (aλ) 

Absorptive power of a body at a given temperature and wavelength is defined as 

the ratio of the amount of heat energy absorbed to the amount of heat energy 

incident on it. 

If a body absorbs all the radiant energy falling on it , then its absorptive power 

is unity.  

For black bodies, aλ = 1 for all wavelengths but for other substances aλ depends 

on the physical nature of the body. 

 

3) Kirchhoff’s Law 

Kirchhoff’s law states that the ratio of emissive power to absorptive power (eλ 

/αλ) for radiation of a given wavelength is the constant for all bodies at the same 

temperature and is equal to the emissive power of a perfect black body at that 

temperature. 

Mathematically, 
𝒆𝝀

𝒂𝝀
 = constant = Eλ. 

This law accounts for the fact that for a given wavelength of radiation, good 

absorbers are also good emitters. 
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Energy Distribution of Black-Body 

Lummer & Pringsheim carried a series of researches on the energy distribution 

in the spectrum of Black-Body radiation. 

The intensity of radiation emitted by a black-body is not uniformly distributed 

over the whole range of wavelengths in the continuous spectrum emitted by it. 

 

In the image above, notice that: 

 The blackbody radiation curves have quite a complex shape. 

 The intensity of emitted radiation increases as the temperature of the 

blackbody increases for all wavelengths 

 The spectral profile (or curve) at a specific temperature corresponds to a 

specific peak wavelength, and vice versa. 

 As the temperature of the blackbody increases, the peak wavelength decreases. 

 The total energy being radiated (the area under the curve) increases rapidly as 

the temperature increases. 

 

 

Theoretical laws of Black Body Radiation 

 

In the nineteenth century a number of attempts were made to explain the 

spectral distribution of the intensity of radiation from a black body on the basis 

of classical mechanics & electromagnetic theory. 

 

 

http://astronomy.swin.edu.au/cosmos/A/Area


Imtiaz Ahammad 

1) Wien’s Distribution law 

W. Wien, from thermodynamical considerations, showed that the spectral 

distribution of energy by a black body at a temperature ‘T’ can be expressed as  

 

       Eλ dλ = A λ-5 f(λT) dλ 

 

Where, A = constant 

Eλ dλ = the energy density of radiation between the wavelengths λ & λ+dλ and  

f(λT) = the function of the product λT 

 

The Wien’s formula agreed with experimental curves for short wavelengths 

but not match for longer wavelength. 

 

 

2) Wien’s Displacement Law 

The shift in the peak of intensity distribution curve is found by Wien’s 

displacement law. 

It states that if radiation of a particular wavelength at a certain temperature is 

changed to another wavelength, then the temperature changes in the inverse 

ratio. 

i.e. λ1 T1 = λ2 T2 = λ3 T3  

or   λmT = Constant 

 

 

3) Rayleigh- Jeans Law 

The Rayleigh-Jeans law of spectral distribution of black body radiation is 

derived on basis of - i) the theorem of equipartition of energy 

                                 ii) the theorem of stationary waves in a hollow enclosure 

According to this law, the energy density is given by –  

  

            Eλ dλ = 8πKT λ-4 dλ 

 

Where, K = Boltzmann constant and  

Eλ dλ = the energy density of radiation between the wavelengths λ & λ+dλ  

 

This law can explain the experimental results in the long wavelength side but 

fails in the short wavelength side. 
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 Ultra-Violet Catastrophe 

 

According to the Rayleigh-Jeans law as wavelength (λ) decreases, the 

energy density (Eλ) will continuously increase and as λ tends to zero, Eλ 

approaches infinity. 
 

This is contrary to the experimental results. 

This discrepancy between the theoretical conclusion and the experimental 

result is called Ultra-violet catestrophe. 
 
 

 
 

 

4) Planck’s law of Radiation 

In order to explain the distribution of energy in the spectrum of a black body, 

Max Planck put forward the quantum theory of radiation. 

According to Planck’s idea the energy changes take place only discontinuously 

and discretely as an integral multiple of a small unit of energy called a quantum.  

Planck’s Law of blackbody radiation, a formula to determine the spectral 

energy density of the emission at each wavelength (Eλ) at a particular absolute 

temperature (T) -  

Eλ dλ = 
8𝜋ℎ𝑐

 𝜆5 (𝑒
ℎ𝑐

𝜆𝐾𝑇 −1)

 dλ 

Where, K = Boltzmann constant and  

Eλ dλ = the energy density of radiation between the wavelengths λ & λ+dλ and 

h = Planck’s constant. 

 

Planck’s formula for the energy distribution of black-body radiation agrees 

well with the experimental results both for the long and short wavelength. 

http://astronomy.swin.edu.au/cosmos/D/Density
http://astronomy.swin.edu.au/cosmos/W/Wavelength
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Deduction of other’s laws from Planck’s law 

The different classical laws of radiation can be obtained from Planck’s law –  

1) Wien’s Distribution Law 

   Planck’s Law of blackbody radiation is given by - Eλ dλ = 
8𝜋ℎ𝑐

 𝜆5 (𝑒
ℎ𝑐

𝜆𝐾𝑇 −1)

 dλ 

  Now, for short wavelength and low temperature λT is small. 

  Therefore, 𝑒
ℎ𝑐

𝜆𝐾𝑇 >> 1, and 1 can be neglected in the denominator. 

 

       Eλ dλ = 
8𝜋ℎ𝑐

 𝜆5 (𝑒
ℎ𝑐

𝜆𝐾𝑇 )

 dλ = 8πhcλ-5 𝑒
−ℎ𝑐

𝜆𝐾𝑇 dλ = A λ-5 f(λT) 

      Which is Wien’s distribution law 

2) Rayleigh – Jeans Law 

For long wavelength and high temperature, λT is large. 

Therefore, 𝑒
ℎ𝑐

𝜆𝐾𝑇  = 1 + 
ℎ𝑐

𝜆𝐾𝑇
 + 

1

2!
 (

ℎ𝑐

𝜆𝐾𝑇
)2 + …………. 

Now, neglecting higher order terms we obtained,  𝑒
ℎ𝑐

𝜆𝐾𝑇  ≈ 1 + 
ℎ𝑐

𝜆𝐾𝑇
 

Therefore, Eλ dλ = 
8𝜋ℎ𝑐

𝜆5
  

1

1+ 
ℎ𝑐

𝜆𝐾𝑇
  −1

 dλ = 
8𝜋𝐾𝑇

𝜆4
 dλ  

Which is Rayleigh-Jeans law. 

 

3) Wien’s Displacement Law 
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B. Photo-Electric Effect 

Photoelectric effect was first introduced by Wilhelm Ludwig Franz Hallwachs in 

the year 1887 and the experimental verification was done by Heinrich Rudolf 

Hertz. They observed that when a surface is exposed to electromagnetic radiation 

at a higher threshold frequency, the radiation is absorbed and the electrons are 

emitted. Today, we study photoelectric effect as a phenomenon which involves a 

material absorbing electromagnetic radiation and releasing electrically charged 

particles. 

Photoelectric Effect 

The photoelectric effect is the process that involves the ejection or release of 

electrons from the surface of materials (generally a metal) when light falls on 

them.  

The metals that exhibit the photoelectric effect are called photosensitive materials 

and the emitted electrons are called photo-electrons. 

The photoelectric effect is an important concept that enables us to clearly 

understand the quantum nature of light and electrons. 

 

Experimental Study of Photoelectric Effect 

Lenard’s experimental arrangement is shown in figure –  

 
 

The given set up experiment is used to study the photoelectric effect 

experimentally. In an evacuated glass tube. Two zinc plates C and D are enclosed. 

Plates C acts as anode and D acts as a photosensitive plate. 

https://byjus.com/chemistry/quantum-theory-of-light/
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Two plates are connected to a battery B and ammeter A. If the radiation is incident 

on the plate D through a quartz window W electron are ejected out of plate and 

current flows in the circuit this is known as photocurrent. Plate C can be 

maintained at desired potential (+ve or – ve) with respect to plate D. 

 

Experimental observations of photoelectric emission:  

 

1. For a particular metal, there exists a certain minimum frequency (so called 

threshold frequency f0) of incident radiation below which no 

photoelectrons are emitted, regardless of the intensity of light.  

2. Above the threshold frequency, the maximum kinetic energy of the emitted 

photoelectron depends on the frequency of the incident light and on the 

material, but is independent of the intensity of the incident light.  

3. The rate at which photoelectrons are ejected is directly proportional to the 

intensity of the incident light.  

4. The time lag between the incidence of radiation and the emission of a 

photoelectron is very small. 

Factors affecting Photoelectric Effect 

With the help of this apparatus, we will now study the dependence of the 

photoelectric effect on the following factors. 

1. The intensity of incident radiation. 

2. Potential difference between metal plate and collector. 

3. Frequency of incident radiation. 

a) Effects of Intensity of Incident Radiation on Photoelectric Effect 

The potential difference between the metal plate and collector and 

frequency of incident light is kept constant and the intensity of light is 

varied: 

The electrode C i.e. collecting electrode is made positive with respect to D 

(metal plate). For a fixed value of frequency and the potential between the 

metal plate and collector, the photoelectric current is noted in accordance 

with the intensity of incident radiation. 

It shows that photoelectric current and intensity of incident radiation both 

are proportional to each other the photoelectric current gives an account of 

the number of photoelectrons ejected per sec. 

      b) Effects of Potential Difference between metal plate and collector on 

            Photoelectric Effect 
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The frequency of incident light and intensity is kept constant and the 

potential difference between the plates is varied: 
Keeping the intensity and frequency of light constant, the positive potential 

of C is increased gradually. Photoelectric current increases when there is a 

positive increase in the potential between the metal plate and collector up 

to a characteristic value. 

There is no change in photoelectric current when potential increased higher 

than the characteristic value for any increase in the accelerating voltage. 

This maximum value of the current is called as saturation current. 

     c) Effect of Frequency on Photoelectric Effect 

The intensity of light is kept constant and the frequency of light is 

varied: 
For a fixed intensity of incident light, variation in the frequency of incident 

light produces linear in the variation cut off potential/stopping potential of 

the metal. It shown cut off potential (Vc) is linearly proportional to the 

frequency of incident light 

The kinetic energy of the photoelectrons increases directly proportionally 

to the frequency of incident light to completely stop the photoelectrons. 

We should reverse and increase the potential between the metal plate and 

collector in (negative value) so the emitted photoelectron can’t reach the 

collector. 

 

Different Graphs of Photoelectric Equation 

 Kinetic energy V/s frequency 

 Vmax V/s v 

 Saturated Current V/s Intensity 

 Stopping potential V/s frequency 

 Potential V/s current: (γ = constant) 

 Photoelectric current V/s Retarding potential 
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Laws of Photoelectric Effect 

1. For a light of any given frequency; (γ > γ Th) photoelectric current is directly 

proportional to the intensity of light 

2. For any given material, there is a certain minimum (energy) frequency, 

called threshold frequency, below which the emission of photoelectrons 

stops completely, no matter how high is the intensity of incident light. 

3. The maximum kinetic energy of the photoelectrons is found to increase 

with the increase in the frequency of incident light, provided the frequency 

(γ > γ Th) exceeds the threshold limit. The maximum kinetic energy is 

independent of the intensity of light. 

4. The photo-emission is an instantaneous process. 

 

Minimum Condition for Photoelectric Effect 

Threshold Frequency (γth) 

It is the minimum frequency of the incident light or radiation that will produce a 

photoelectric effect i.e. ejection of photoelectrons from a metal surface is known 

https://byjus.com/physics/kinetic-energy/
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as threshold frequency for the metal. It is constant for a specific metal but may 

be different for different metals. 

If γ = frequency of incident photon and γth= threshold frequency, then, 

 If γ < γTh, there will be no ejection of photoelectron and, therefore, no 

photoelectric effect. 

 If γ = γTh, photoelectrons are just ejected from the metal surface, in this 

case, the kinetic energy of the electron is zero 

 If γ > γTh, then photoelectrons will come out of the surface along with 

kinetic energy 

Threshold Wavelength (λth) 

During the emission of electrons, a metal surface corresponding to the 

greatest wavelength to incident light is known threshold wavelength. 

λth = c/γth 

For wavelengths above this threshold, there will be no photoelectron emission. 

For λ = wavelength of the incident photon, then 

 If λ < λTh, then the photoelectric effect will take place and ejected electron 

will possess kinetic energy. 

 If λ = λTh, then just photoelectric effect will take place and kinetic energy 

of ejected photoelectron will be zero. 

 If λ > λTh, there will be no photoelectric effect. 

 

Work Function or Threshold Energy (Φ) 

The minimal energy of thermodynamic work that is needed to remove an electron 

from a conductor to a point in the vacuum immediately outside the surface of the 

conductor is known as work function/threshold energy 

Φ = hγth = hc/λth 

The work function is the characteristic of a given metal. If E = energy of an 

incident photon, then 

1. If E < Φ, no photoelectric effect will take place. 

2. If E = Φ, just photoelectric effect will take place but the kinetic energy of 

ejected photoelectron will be zero 

3. If E > photoelectron will be zero 

4. If E > Φ, the photoelectric effect will take place along with possession of 

the kinetic energy by the ejected electron. 

https://byjus.com/physics/wavelength-of-light/
https://byjus.com/physics/thermodynamics/
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Stopping Potential (Vs) 

Stopping potential is defined as the potential required to stop ejection of electron from 

a metal surface when incident beam of energy greater than the work potential of metal 

is directed on it. 

Einstein’s Photoelectric Equation 

According to Einstein theory on photoelectric effect is, when a photon collides 

inelastically with electrons, the photon is absorbed completely or partially by the 

electrons. So, if an electron in a metal absorbs a photon of energy, it uses the 

energy in the following ways. 

Some energy Φ0 is used to making the surface electron free from the metal. It is 

known as work function of the material. Rest energy will appear as kinetic energy 

(KE) of the emitted photoelectrons. 

According to the Einstein explanation of the photoelectric effect is: 

The energy of photon = energy needed to remove an electron + kinetic energy 

of the emitted electron 

i.e. hν = W + K.E 

1

2
 m𝑣𝑚𝑎𝑥

2  = (hν – W) = h (ν – ν0) 

Where, h is Planck’s constant. 

             ν is the frequency of the incident photon. 

            W is a work function = hν0 

            K.E is the maximum kinetic energy of ejected electrons = 
1

2
 m𝑣𝑚𝑎𝑥

2  

Explanation Photoelectric Phenomenon by Einstein’s Equation  

 The frequency of the incident light is directly proportional to the kinetic 

energy of the electrons and the wavelengths of incident light are inversely 

proportional to the kinetic energy of the electrons. 

 If γ = γth or λ =λth then vmax = 0. 

 γ < γth or λ > λth: There will be no emission of photoelectrons. 

 The intensity of the radiation or incident light refers to the number of 

photons in the light beam. More intensity means more photons and vice-

versa. Intensity has nothing to do with the energy of the photon. Therefore, 

intensity of the radiation is increased, the rate of emission increases but 

there will be no change in kinetic energy of electrons. With an increasing 

number of emitted electrons, the value of photoelectric current increases. 

https://byjus.com/physics/inelastic-collision/
https://byjus.com/physics/inelastic-collision/
https://byjus.com/physics/einsteins-explaination/
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Applications of Photoelectric Effect 

 Used to generate electricity in Solar Panels. These panels contain metal 

combinations that allow electricity generation from a wide range of 

wavelengths. 

 Motion and Position Sensors: In this case, a photoelectric material is 

placed in front of a UV or IR LED. When an object is placed in between 

the Light-emitting diode (LED) and sensor, light is cut off and the 

electronic circuit registers a change in potential difference 

 Lighting sensors such as the ones used in smartphone enable automatic 

adjustment of screen brightness according to the lighting. This is because 

the amount of current generated via the photoelectric effect is dependent 

on the intensity of light hitting the sensor. 

 Digital cameras can detect and record light because they have photoelectric 

sensors that respond to different colours of light. 

 X-Ray Photoelectron Spectroscopy (XPS): This technique uses x-rays to 

irradiate a surface and measure the kinetic energies of the emitted 

electrons. Important aspects of the chemistry of a surface can be obtained 

such as elemental composition, chemical composition, the empirical 

formula of compounds and chemical state. 

 

Problems on Photoelectric Effect 

1. In a photoelectric effect experiment, the threshold wavelength of 
incident light is 260 nm and E (in eV) = 1237/λ (nm). Find the maximum 
kinetic energy of emitted electrons. 

Solution: 

Kmax = hc/λ – hc/λ0 = hc × [(λ0 – λ)/λλ0] 

⇒ Kmax = (1237) × [(380 – 260)/380×260] = 1.5 eV 

Therefore, the maximum kinetic energy of emitted electrons in photoelectric effect is 1.5 eV. 

2. In a photoelectric experiment, the wavelength of the light incident on 
metal is changed from 300 nm to 400 nm and (hc/e = 1240 nm-V). Find 
the decrease in the stopping potential. 

Solution: 

hc/λ1 = ϕ + eV1 . . . . (i) 

https://byjus.com/physics/light-emitting-diode/
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hcλ2 = ϕ + eV2 . . . . (ii) 

Equation (i) – (ii) 

hc(1/λ1 – 1/λ2) = e × (V1 – V2) 

⇒V1 – V2 = (hc/e) × [(λ2 – λ1)/(λ1 – λ2)] 

= (1240 nm V) × 100nm/(300nm × 400nm) 

=12.4/12 ≈ 1V. 

Therefore, the decrease in the stopping potential during the photoelectric experiment is 1V. 
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C. Compton Effect 

A. H. Compton observed that “when a monochromatic beam of high frequency 

(lower wavelength) radiation (e.g., X-rays and γ-ray) is scattered by a 

substance, the scattered radiation contains two type of wavelengths one having 

same wavelength as that of incident radiation while the other having the 

wavelength greater (or lower frequency) than that of incident radiations.  

This effect is known as Compton Effect. 

Quantum Explanation: The explanation was given by Compton which was based on quantum 

theory of light. According to quantum theory when photon of energy hυ strikes with the 

substance some of the energy of photon is transferred to the electrons, thereore the energy (or 

frequency) of photon reduces and wavelength increases. 

 

Various assumptions were made for explaining the effect these were: 

(i)    Compton Effect is result of interaction of an individual particle and free electron of target. 

(ii)    The collision is relativistic and elastic. 

(iii)    The laws of conservation of energy and momentum hold good. 

 

 
 

The energy of the system before collision = hυ + m0c
2 

The energy of the system after collision = hυ′ + mc2 

According to the principle of conservation of energy -  

 

    mc2 = h (υ - υ′) + m0c
2                                                              ….  (1) 

 

According to the principle of conservation of linear momentum along and 

perpendicular to the direction of incident photon (i.e., along x and y axis), we 

have 

  

https://sites.google.com/site/puenggphysics/home/unit-iv/compton-effect/Picture1.jpg?attredirects=0
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                                                                                  ......(2) 

and 

 
 

                                                                                               ......(3) 

Squaring (2) and (3) and then adding, we get 

  

 Or 

 

                                         ... (4) 

 

Squaring equation (1), we get 

     … (5) 

Subtracting (4) from (5), we get 

     .... (6) 

According to the theory of relativity 

 

or 

 

or 
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Multiplying both sides by c2, we get 

                                                             …... (7) 

Using equation (7), equation (6) becomes 

 

 

 

                                                   …… (8) 

To find the relation in term of wavelength, let us 

substitute    and     we thus have, 

 

Compton shift 

 

                                                      ....... (9) 

 

From above equations (8) and (9) following conclusions can be drawn 

1. The wavelength of the scattered photon λ’ is greater than the wavelength 

of incident photon λ. 

2. ∆ λ is independent of the incident wavelength. 

3. ∆ λ have the same value for all substance containing free electron 

4. ∆ λ only depend on the scattering angle . 

Special Cases 

1. when ϕ = 00; then cos ϕ = 1 
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             ∆ λ = λ’ – λ = 0                                                 …. (10) 

λ’ = λ, the scattered wavelength is same as the incident wavelength 

in the direction of incidence. 

2. when ϕ = 900; then cos ϕ = 0 

                    

                    

        Δλ = λC                                                            ……. (11) 

Where λC is called the Compton wavelength of the electron. 

3. When ϕ = 0; then cos ϕ = -1 

 

                                        ........ (12) 

 

Why Compton Effect is not observed in visible spectrum 

The maximum change in wavelength max is 0.04652 Ao or roughly 0.05 Ao. 

This small therefore cannot be observed for wavelength longer than few angstrom 

units. For example- 

For X-ray, the incident radiation is about 1Ao, max is 0.05 Ao therefore 

the percentage of incident radiation is about 5%(detectable). 

For Visible radiation, the incident radiation is about 5000 Ao, max is 0.05 

Ao therefore the percentage of incident radiation is about 0.001% 

(undetectable). 

Direction of Recoil electron 

Dividing equation (1.33) by (1.34) direction of recoil electron is given by 
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                                                 ...... (13) 

where 

 

Kinetic Energy of Recoil Electron 

The kinetic energy gained by electron is equal to the energy loss by the scattered 

photon 

 
 

 

 

                                                       ........ (14) 

where 

 

Example 

1. X-rays of wavelength 1Å are scattered from a carbon block. Find the 

wavelength of the scattered beam in a direction making 900 with the incident 

beam. What is the KE of the recoiling electron? 

2. A beam of γ radiation having photon of energy 510 KeV is incident on a foil 

of Aluminium. Calculate the wavelength of radiation at 900. 
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D. de-Broglie Hypothesis  

 De-Broglie Hypothesis of Matter Waves 

In 1924, Louis de-Broglie suggested that similar to light dual nature "every 

moving matter has a associated wave" 

The wave associated with the moving particle is known as matter wave or de-

Broglie wave. 

 De-Broglie wavelength of matter waves 

As a photon travels with a velocity c, we can express its momentum as 

 

Thus 

 

A particle of mass ′m′ moving with a velocity v carries a momentum p = mv and 

it must be associated with the wave of wavelength. 

 

The above relation is known as de-Broglie equation and the wavelength λ is 

known as de-Broglie wavelength. 

 De-Broglie wavelength associated with an accelerated particle 

If a charged particle, say an electron is accelerated by a potential difference 

of V volt,  

then its kinetic energy is given by 

 

 

Then the electron wavelength is given by 
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De-Broglie wavelength expressed in term of kinetic energy  

If a particle has kinetic energy K.E., then 

 

 

 

 

De-Broglie wavelength associated with particle in thermal equilibrium 

If the particle is in thermal equilibrium at temperature T, then their kinetic 

energy is given by 

 

 

 

Where K = 1.38 X 10-23 J/K 

For an electron 

m = 9.1X 10-31 Kg; e = 1.6 X 10-19 C; h = 6.62 X 10-34 J.s 

Therefore 
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Examples 

 

1. What voltage must be applied to an electron microscopic to produce electrons 

of wavelengths 0.40 Å? 

 

2. Find the wavelength of the de-Broglie wave associated with an electron 

having energy 1 MeV. 

 

3. an electron initially at rest is accelerated by a potential difference of 5000 V. 

Find the de-Broglie wavelength. 
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Davisson–Germer’s Experiment 
 

The Davisson–Germer experiment is a physical experiment which provides a 

critically important confirmation of the de-Broglie hypothesis given in 1927, 

which said that particles, such as electrons, are of dual nature. More generally, it 

helped cement the acceptance of quantum mechanics and of the Schrödinger 

equation. The experiment arrangement is shown in figure. The electron beam is 

produced, accelerated and collimated by an electron gun. This beam of electron 

is directed in a high vacuum to fall at an angle on a large single crystal of nickel, 

known as target T. 

 

 

The number of electrons scattered by the crystal in different directions was 

measured with the help of a detector D, which can be moved on a scale. The 

detector current is a measure of the intensity of the diffracted beam. 

A polar graph was then plotted between the detector current and the angle 

between the incident and diffracted beam. Such polar curves were obtained for 

electron accelerated through different voltages. 

 

It was found that a hump appears in the polar curve when44eV electrons were 

incident on the crystal. It is seen that for the accelerating voltage of 54eV, the 

electrons are scattered more pronouncedly at an angle 50owith the direction of 

incident beam. 

 

The maximum is an indication that electrons are being diffracted. In such a case 

https://sites.google.com/site/puenggphysics/home/unit-iv/davisson-germer-experiment/Picture2.jpg?attredirects=0
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Bragg’s law applicable for Xray diffraction by crystals, would be valid for 

electron wave difference also. 

 

The inter planer spacing is obtained from X ray analysis is to be d = 0.91Å 

Glancing angle θ = 65o (90-25)o 

Applying Bragg’s equation 

 

 
The wavelength of electron wave can be computed from the accelerating 

potential V using de-Broglie equation 

 

It is seen that the values obtained experimentally using Bragg’s equation and de-

Broglie equation agreed well and provide evidence to the existence of matter 

waves. 

  

https://sites.google.com/site/puenggphysics/home/unit-iv/davisson-germer-experiment/Picture3.jpg?attredirects=0
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E. Group velocity & Phase velocity 

According to de-Broglie hypothesis, a material particle in motion has a wave 

associated with it, the wavelength of the wave can be given as 

     (1)  

where m is the mass and v is the velocity of the particle. If the energy of the 

particle is E, then the frequency υ of the wave can be specified by the quantum 

condition E = hυ, 

 Hence 

 (2) 

But according to Einstein’s mass energy-relation E = mc2, so from above, 

equation becomes 

                                                                                                              (3)                                   

The de-Broglie velocity u is given by , therefore substitute  and  from 

equations (1) and (2),  

we have 

 

 

or 

                                                                                                              (4) 

According to the theory of Relativity particle velocity (v) is always less than the 

speed of light c. Equation (1.4) implies that the De-Broglie wave velocity must 

be greater than c. This is an unexpected result. According to this the de-Broglie 

wave associated with the particle would travel faster than the particle itself, thus 

leaving the particle far behind. 

The difficulty was recovered by Schrödinger by postulating that a material 

particle in motion is equivalent to a wave packet rather than a single wave. Wave 

packet comprises of a group of waves, each with slightly different velocity and 

wavelength. Such a wave packet moves with its own velocity vg, called the group 

velocity. 
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The individual wave forming the wave packet possesses an average velocity, vP 

called the phase velocity. 

It can be shown that the velocity of the material particle v is the same as group 

velocity. 
 

 

Let us assume two wave trains have same amplitude but different frequency and 

phase velocities 

                                                                            (5a) 

                                                   (5b) 

where w and (w+Δw) are angular frequencies and 

 k and (k + Δk) are propagation constants 

The superposition of two waves is of the form 

           (6) 

as Δw and Δk are small therefore (w +  Δw) w and (k + Δk) k, the above 

equation  reduces to 

                                                     (7) 

This equation represents a vibration of amplitude 

 

                                                                                    (8) 

The phase of the resultant wave moves with the velocity known as phase velocity, 

                                                                                                        (9) 

https://sites.google.com/site/puenggphysics/home/unit-iv/group-and-particle-velocities/Picture4.jpg?attredirects=0
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And the amplitude moves with the velocity known as group velocity 

 

                                                                                                    (10) 

 

Relation between phase and group velocity 
 

Since, the Phase velocity of wave is  

 

Rewriting above equation 

 

Differentiating above equation with respect to k, we get 
 

 

as    

 
 

using partial differentiation 

 

as   k = 
2𝜋

𝜆
; therefore λ = 

2𝜋

𝑘
  and 

 
 

substituting this in above equation, we obtain 

 

This is the relation between group velocity and phase velocity. 
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F. Heisenberg’s Uncertainty Principle 

In 1927 Heisenberg proposed “the uncertainty principle”. This principle is a result 

of the dual nature of matter. 

In quantum mechanics a particle is described by a wave packet, which represents 

and symbolizes all about particle and moves with group velocity.  

According to Born’s probability interpretation “the particle may be found 

anywhere within the wave packet”. This implies that the position of the particle 

is uncertain within the limits of wave packet. Moreover, the wave packet has 

velocity spread and hence there is uncertainty about the velocity or momentum 

of the particle. This means it is impossible to know where the particle is and what 

is its exact velocity and momentum. 

 

For a large wave packet with many crests the velocity spread is very small so that the particle 

velocity can be fairly determined, but the position of the particle became completely uncertain. 

On the other hand if we consider infinitely small wave packet the position of the particle 

become certain but the velocity became quite uncertain. 

Hence “it is impossible to determine simultaneously both the position and momentum (or 

velocity) of a particle with accuracy”. 

Statement of uncertainty principle: “The product of uncertainties in determining the 

position and momentum of the particle at the same time instant is at best of the order of ℏ ” 

 

Where, ℏ  = 
𝒉

𝟐𝝅
 

 ∆x is uncertainty in determining position of the particle and ∆p is that in 

determining the momentum. 

Proof of uncertainty relation 

The position of the particle can be located anywhere in the wave packet, along 

the x-axis the length of the wave packet is measured between two nodes (where 

amplitude becomes almost zero). 

https://sites.google.com/site/puenggphysics/home/unit-iv/uncertainty-principle/Picture5.jpg?attredirects=0


Imtiaz Ahammad 

 

The amplitude of the wave can be given according to equation (1.9) as 

2A cos [ 
𝛥𝑤

2
𝑡 − 

𝛥𝑘

2
𝑥] 

As 2A will never be zero 

 

 

Or [ 
𝛥𝑤

2
𝑡 − 

𝛥𝑘

2
𝑥] = 

𝜋

2
 ,

3𝜋

2
 
5𝜋

2
 ,

7𝜋

2
 ………. 

(2𝑛+1)𝜋

2
 

Where n=0,1,2,3...... 

 

 

Subtracting above equations, we get 

 

 

 

 

 

https://sites.google.com/site/puenggphysics/home/unit-iv/uncertainty-principle/Picture6.jpg?attredirects=0
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or 

 

This relation is universal and holds for all the canonically conjugate quantities 

like position and momentum, energy and time, angular momentum and angle, etc. 

whose product has a dimension of action (joule. Sec) 

Thus if ∆E is the uncertainty in determining the energy and ∆t is the uncertainty 

in determining the time,  

then we must have 

 

Similarly 

 

where ∆J is the uncertainty in determining the angular momentum and ∆θ is the 

uncertainty in determining the angle. 

The exact statement of uncertainty principle is: “The product of uncertainty in 

determining the position and momentum of the particle can never be smaller 

than the number of order  
ℏ 

𝟐𝛑
” 

 

 

 

 

Uncertainty Relation for energy and time 

Uncertainty relation in term of position and momentum is 

 

consider a free particle of mass ‘m’ moving with velocity ‘v’. Its kinetic energy 

is 
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where p =mv (momentum of particle) 

uncertainty in energy is given by (differentiating above equation w.r.t. p) 

 

 

 

 

As     

therefore 

 

 

 Application of Heisenberg’s Uncertainty Relation 

(i) Diffraction due to single slit 

The width of the slit is the limit of uncertainty in locating the particle at the time 

of crossing the slit. According to diffraction theory the first order minimum is 

obtained as -  

            Δy sinθ = l                          (a sinθ  = λ)  

 

Let p be the momentum of electron moves in x direction after diffraction the 

electron deviates from the initial path and acquires a y- component of momentum 

lies between p sin(–θ ) to  p sinθ 
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Hence the uncertainty in measuring the momentum is 

                      (as p = h / λ) 

 

From above equations, we have 

 

 

Thus, the product of uncertainties in position and momentum is of the order of 

Plank’s constant. 

 

 

(ii) Electron microscope 

Limit of resolution of microscope depends upon the wavelength of light used to 

illuminate the electron and is given by  

    

Where ∆x represents the distance between two points which can just be resolved 

by the microscope and hence it represents the uncertainty in determining the 

position of particle, q is the semi vertical angle of the cone of light. To minimize 

the position uncertainty, we must use the radiation of shortest wavelength, such 

as γ ray involves the Compton Effect where the electron experiences recoil. 

https://sites.google.com/site/puenggphysics/home/unit-iv/application-of-heisenbergs-uncertanity-relation/Picture3.jpg?attredirects=0
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In order to observe where the electron is one of the incident photons must strike 

then electron and scatter into microscope. When the photon bounces off into the 

microscope, it transfers momentum to the electron the amount of momentum 

transferred being uncertain due to definite aperture of the microscope. 
 

When a photon of initial momentum p = h / λ after scattering enters the field of 

view of microscope it may be anywhere from –θ to  θ. 
 

 
 

Therefore the x component of momentum of γ ray photon of wavelength λ can 

have in between p sin (–θ) to  p sin(θ). 

Thus uncertainty in the momentum transferred to electron in x direction  

 

 

                          
using above equations, the product of uncertainty in position and momentum is 

 
 

  

  

 

i.e., the product of uncertainty of x component of momentum of the electron and 

the uncertainty in its position along x axis is of the order of h which is greater 

than h / 2p. 
 

https://sites.google.com/site/puenggphysics/home/unit-iv/application-of-heisenbergs-uncertanity-relation/Picture1.jpg?attredirects=0
https://sites.google.com/site/puenggphysics/home/unit-iv/application-of-heisenbergs-uncertanity-relation/Picture2.jpg?attredirects=0
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(iii) Nonexistence of electron in the nucleus 

The radius of the nucleus for any atom is of the order of 10-14
 m, so the uncertainty 

in its position is greater than 10-14
 m. 

According to uncertainty principal 

  
where Δx is uncertainty in position and Δp is uncertainty in momentum and joules 

sec. 

 

(Δx)max = 10-14 m 

 

 
 

 

           as mass of electron m= 9.1 X 10-31 Kg 

 
 

= 9.7 x 107 eV (approx.) 

= 97 MeV 
 

The kinetic energy of an electron is found as the order of 97 MeV. But 

experimental observations show that the electron has the maximum kinetic 

energy of 4 MeV, therefore the electron does not exist in the nucleus. 
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G. Wave Mechanics 

In quantum mechanics the motion of an atomic particle is described by the wave 

function ψ.  

Thus, we say that the wave function determines the entire space-time behaviour 

of a quantum particle. 

The so-called wave function describes the state of the electron (or any physical 

system). Usually the Greek letter psi (or sometimes φ) is used, and in general Ψ 

(x, y, z, t) or   or in one-dimension Ψ (x, t).  

The values of Ψ are usually complex numbers. 

However,   has no physical significance as it is not an observable quantity. 

The square of absolute magnitude is proportional to the probability of finding the 

particle there at that time. 

 

 

where 

 is complex conjugate of  

To find the particle somewhere in given space  must be 

finite 

If     

The wave function satisfying above equation is said to be normalized and this 

condition is called Normalization Condition 

Properties of wave function 

1. The wave function must be finite. 

2. The wave function is single valued 

3. The wave function and its all derivatives are continuous 

 

What is the physical meaning of the wave function Ψ for a particle?  
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The wave function describes the distribution of the particle in space. It is related 

to the probability of finding the particle in various regions. If we imagine a 

volume element dV around a point, the probability that the particle can be found 

in that volume element is measured by | Ψ |2dV.  

The so-called probability density is  

ρ = |Ψ|2 ≡ Ψ*. Ψ 

 

The probability of finding a particle in an arbitrary volume is the integral of the 

probability density:  

p (V) = ∫ 𝜌 𝑑𝑉  = ∫ |Ψ| 2 dV 

One can have the information only about where the particle is likely to be, not 

where it is for sure. 

Principle of superposition: 
If ψ1 and ψ2 are possible wave-functions of the system, then the  
Ψ = c1 Ψ1 + c2 Ψ2 

linear combination is also a possible wave-function. 
 

Operators  
The observables, i.e. those physical quantities which are dynamical variables (i.e. 

not constants like m or q) are represented by linear operators, denoted by “hat” 

on the top of the letter:  Ǎ 

To obtain specific values for physical quantities, for example energy or 

momentum, you operate on the wavefunction with the quantum mechanical 

operator associated with that quantity.  

In linear algebra, an eigenvector of a square matrix is a vector that points in a 

direction which is invariant under the associated linear transformation (eigen here 

is the German word meaning self or own). In other words, if ẑ is a nonzero vector, 

then it is an eigenvector of a square matrix A if Aẑ is a scalar multiple of ẑ. 

Similarly, in case of functions, f is an eigenfunction of an operator Ǎ if the action 

of that operator is only a multiplication of that function by a number: 

Ǎ f (x)= a f(x) 

where a is a real or complex number.  

For example, 
𝑑

𝑑𝑥
  is a linear operator and if f(x) = 𝑒𝑎𝑥 then 

𝑑

𝑑𝑥
  f(x) = 

𝑑

𝑑𝑥
  {𝑒𝑎𝑥} = a 𝑒𝑎𝑥 = a f(x) 

Therefore, this f(x) is an eigenfunction and the eigenvalue is a.  

A number a can be the value of an observable only if a is an eigenvalue of the 

operator Ǎ which represents the observable. We have 2 cases:  
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1. The wave function of the system is an eigenfunction of Ǎ i.e. the system is an 

eigenstate of the operator. In this case the value of any (precise) measurement of 

the physical quantity will be a. 

2. The wave function of the system is not an eigenfunction of different numbers. 

For example, the system has the wave function  

Ψ = c1 Ψ1 + c2 Ψ2 

which is a combination of eigenstates, i.e.  

Ǎ Ψ1 = a1 Ψ1 and Ǎ Ψ2 = a2 Ψ2 

Now the result of the measurement can be different numbers. We will measure 

with probability |c1|
2 and with probability |c2|

2. 

 

The eigenvalues an may be discrete, and in such cases, we can say that the 

physical variable is "quantized" and that the index n plays the role of a "quantum 

number" which characterizes that state. 

 

Quantum Operators 
 

An operator is a rule by means of which a given function is changed into another 

function. The measurable quantities like energy, momentum, position, etc. are 

called observables. Each observable has a definite operator associated with it. 

1. Position Operator  

As the first example, there is an x-position operator, which is a simple 

multiplication:  

                  
It turns the wave function Ψ into xΨ.  

 

2. Momentum operator: 
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In three dimensions, the momentum operator is given by -  

                            

3. Energy operator:  

                              

4. Kinetic Energy Operator  

 

 

5. Hamiltonian Operator  
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H. Schrödinger Wave Equation 
Schrödinger wrote his famous equation to describe the motion of the electron. 

Schrödinger wave equation, is the fundamental equation of quantum mechanics, 

same as the second law of motion is the fundamental equation of classical 

mechanics. This equation has been derived by Schrödinger in 1925 using the 

concept of wave function on the basis of de-Broglie wave and plank’s quantum 

theory. 

 

The Schrödinger equation (also known as Schrödinger’s wave equation) is a 

partial differential equation that describes the dynamics of quantum mechanical 

systems via the wave function. The trajectory, the positioning, and the energy of 

these systems can be retrieved by solving the Schrödinger equation. 

All of the information for a subatomic particle is encoded within a wave function. 

The wave function will satisfy and can be solved by using the Schrodinger 

equation. The equation is one of the fundamental axioms that are introduced in 

undergraduate physics. It is also increasingly common to find the Schrödinger 

equation being introduced within the electrical engineering syllabus in 

universities as it is applicable with semiconductors. 

Unfortunately, it is only stated as a postulate in both cases and never derived in 

any meaningful way. This is quite dissatisfying as nearly everything else taught 

in undergraduate quantum physics is built upon this foundation. In this article, we 

will derive the equation from scratch and I’ll do my best to show every step taken. 

Interestingly enough, the arguments we will make are the same as those taken by 

Schrödinger himself so you can see the lines of thinking a giant was making in 

his time. As a reminder, here is the time-dependent Schrödinger equation in 3-

dimensions - 

 
 

For Free Particle 

If there are no external forces, then the particle is said to be free and for the free 

particle V = 0. Therefore, time dependent Schrödinger wave equation for the free 

particle in three dimensions –  

 

 
 

 

 

 

 

https://www.electrical4u.com/theory-of-semiconductor/
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Schrodinger Wave Equation Derivation (Time-Dependent) 

Considering a complex plane wave: 

 
Now the Hamiltonian of a system is 

 
Where ‘V’ is the potential energy and ‘T’ is the kinetic energy. As we already 

know that ‘H’ is the total energy, we can rewrite the equation as: 

 
Now taking the derivatives, 

 
We know that, 

 
where ‘λ’ is the wavelength and ‘k’ is the wavenumber. 

We have 

 
Therefore, 

 
Now multiplying Ψ (x, t) to the Hamiltonian we get, 

 
The above expression can be written as: 
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We already know that the energy wave of a matter wave is written as 

 
So we can say that 

 
Now combining the right parts, we can get the Schrodinger Wave Equation. 

 
This was the Derivation of Schrodinger Wave Equation (time-dependent). 

 

 

 

The Time Independent Schrödinger Equation 

Second order differential equations, like the Schrödinger Equation, can be solved 

by separation of variables. These separated solutions can then be used to solve 

the problem in general. 

Assume that we can factorize the solution between time and space. 

 

Plug this into the Schrödinger Equation. 

 

Put everything that depends on x on the left and everything that depends on t on 

the right. 
 

 

Since we have a function of only x set equal to a function of only t, they both 

must equal a constant. In the equation above, we call the constant E, (with some 

knowledge of the outcome). We now have an equation in t set equal to a constant. 
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which has a simple general solution, 

 

and an equation in x set equal to a constant 

 

which depends on the problem to be solved (through V(x)). 

The x equation is often called the Time Independent Schrödinger Equation. 

 

Here, E is a constant. The full-time dependent solution is. 

 

 

 

 

Application of Schrodinger Wave Equation 
 

1. Particle in a One-Dimensional Deep Potential Well 

Let us consider a particle of mass ‘m’ in a deep well restricted to move in a one 

dimension (say x).  

Let us assume that the particle is free inside the well except during collision with 

walls from which it rebounds elastically. 

The potential function is expressed as 

V(x) = 0                              for       0 ≤ 𝑥 ≤ 𝐿  
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V(x) = ∞            for                 x < 0 and x > L     

 
 

Figure: Particle in deep potential well 

The probability of finding the particle outside the well is zero (i.e. ψ = 0). 

 Inside the well, the Schrödinger wave equation is written as 

 

Substituting    
2𝑚𝐸

ħ
 = k2 and writing the SWE for 1-D 

We get,                

The general equation of above equation may be expressed as – 

ψ = A sin (kx + ϕ) 

Where A and ϕ are constants to be determined by boundary conditions 

Condition I: We have ψ = 0 at x = 0, therefore from above equation 

0 = A sin (ϕ) 

As A ≠ 0   then sin ϕ = 0     or     ϕ = 0  

Condition II: Further ψ = 0 at x = L, and ϕ = 0, therefore from above equation  

0 = A sin (kL) 

https://sites.google.com/site/puenggphysics/home/unit-iv/particle-in-1-d-potential-box/Picture1.jpg?attredirects=0
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As A ≠0 then sin(kL) = 0 or kL = nπ 

k = 
nπ

𝐿
              where n = 1,2,3,4……. 

Substituting the value of k, we obtain 

  

This gives E = En (say)  

 

                                                    where n = 1,2,3,4, … 

From equation En is the energy value (Eigen Value) of the particle in a well.  

It is clear that the energy values of the particle in well are discrete not continuous. 

 
 

Figure: Energy for Particle 

 

Therefore, the corresponding wave functions will be 

   

The probability density -     

 

The probability density is zero at x = 0 and x = L. since the particle is always 

within  

https://sites.google.com/site/puenggphysics/home/unit-iv/particle-in-1-d-potential-box/Picture2.jpg?attredirects=0
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the well    

 

 

 

 

Substituting A in equation (1.68), we get 

                                                 where n = 1,2,3,4, …    

 

The above equation is normalized wave function (Eigen function) belonging to 

energy value En. 

 
 

Figure: Wave function for Particle 

 

 

 

https://sites.google.com/site/puenggphysics/home/unit-iv/particle-in-1-d-potential-box/Picture3.jpg?attredirects=0
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2. A free Particle 

A particle is said to be free when no external force is acting on during its motion 

in the given region of space, and its potential energy V is constant. 

Let us consider an electro is freely moving in space in positive x direction and 

not acted by any force, there potential will be zero. The Schrodinger wave 

equation reduces to 

 

Substituting, we get 

 

As the electron is moving in one direction (say x axis), then the above equation 

can be written as - 

   

The general solution of the above equation is of the form ψ = ψ0 𝑒−𝑖𝜔𝑡  

The electron is not bounded and hence there are no restrictions on k. This implies 

that all the values of energy are allowed. The allowed energy values form a 

continuum and are given by - 

 

The wave vector k describes the wave properties of the electron. It is seen from 

the relation that . Thus the plot of E as a function of k gives a parabola. 
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The momentum is well defined and, in this case, given by 

 

Therefore, according to uncertainty principle it is difficult to assign a position to 

the electron. 

 

 

Solved Problems Quantum Physics 

1. Calculate the wavelength associated with an electron with energy 2000 eV. 

Sol: E = 2000 eV = 2000×1.6×10-19J 

 

https://sites.google.com/site/puenggphysics/home/unit-iv/a-free-particle/Picture4.jpg?attredirects=0
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2. An electron is moving under a potential field of 15 kV. Calculate the 

wavelength of the electron waves.  

Sol: V = 15 kV = 15×103 V 

 

 

3. An electron is bound in one-dimensional infinite well of width 1 × 10–10 m. 

Find the energy values in the ground state and first two excited states. 

Sol: Potential well of width (L) = 1×10-10 m 

 

For ground state n= 1  

 

For First state n= 2, 

E2 = 4E1 = 4×37.737 eV = 150.95 eV 

And E3 = 9E1 = 9 × 37.737 = 339.639 eV 
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