

Imtiaz Ahammad

COMBINATIONAL CIRCUITS

Combinational Logic

• Logic circuits for digital systems may be combinational or sequential.

• A combinational circuit consists of input variables, logic gates, and output

variables.

For n input variables, there are 2n possible combinations of binary input

variables. For each possible input Combination, there is one and only one possible

output combination. A combinational circuit can be described by m Boolean

functions one for each output variables.

Analysis procedure

To obtain the output Boolean functions from a logic diagram, proceed as follows:

1. Label all gate outputs that are a function of input variables with arbitrary

symbols. Determine the Boolean functions for each gate output.

2. Label the gates that are a function of input variables and previously labeled

gates with other arbitrary symbols. Find the Boolean functions for these

gates.

3. Repeat the process outlined in step 2 until the outputs of the circuit are

obtained.

4. By repeated substitution of previously defined functions, obtain the output

Boolean functions in terms of input variables.

Design Procedure:

1. The problem is stated

2. The number of available input variables and required output variables is

determined.

3. The input and output variables are assigned letter symbols.

4. The truth table that defines the required relationship between inputs and

outputs is derived.

5. The simplified Boolean function for each output is obtained.

6. The logic diagram is drawn.

Imtiaz Ahammad

A. Adders:

In electronics, an adder or summer is a digital circuit that performs addition of

numbers. In modern computers adders reside in the arithmetic logic unit (ALU)

where other operations are performed. Although adders can be constructed for

many numerical representations, such as Binary-coded decimal or excess-3, the

most common adders operate on binary numbers. In cases where twos

complement or one’s complement is being used to represent negative numbers; it

is trivial to modify an adder into an adder-subtractor. Other signed number

representations require a more complex adder.

Digital computers perform variety of information processing tasks, the one is

arithmetic operations. And the most basic arithmetic operation is the addition of

two binary digits. i.e, 4 basic possible operations are:

 0 + 0 = 0, 0 + 1 = 1, 1 + 0 =1, 1 + 1= 10

The first three operations produce a sum whose length is one digit, but when

augends and addend bits are equal to 1, the binary sum consists of two digits. The

higher significant bit of this result is called a carry. A combinational circuit that

performs the addition of two bits is called a half- adder. One that performs the

addition of 3 bits (two significant bits & previous carry) is called a full adder &

two half adder can employ as a full-adder.

1. The Half Adder:

A Half Adder is a combinational circuit with two binary inputs (augends and

addend bits and two binary outputs (sum and carry bits.) It adds the two inputs

(A and B) and produces the sum (S) and the carry (C) bits. It is an arithmetic

operation of addition of two single bit words.

Imtiaz Ahammad

The Sum(S) bit and the carry (C) bit, according to the rules of binary addition,

the sum (S) is the X-OR of A and B. Therefore,

S = A⊕B = AˊB + ABˊ

The carry (C) is the AND of A and B. Therefore, C=AB

Logic diagrams of half-adder

NAND LOGIC:

NOR Logic:

Imtiaz Ahammad

2. The Full Adder:

A Full-adder is a combinational circuit that adds two bits and a carry and outputs

a sum bit and a carry bit. To add two binary numbers, each having two or more

bits, the LSBs can be added by using a half-adder. The carry resulted from the

addition of the LSBs is carried over to the next significant column and added to

the two bits in that column. So, in the second and higher columns, the two data

bits of that column and the carry bit generated from the addition in the previous

column need to be added.

The full-adder adds the bits A and B and the carry from the previous column

called the carry-in (Cin) and outputs the sum bit (S) and the carry bit called the

carry-out (Cout). The variable S gives the value of the least significant bit of the

sum. The variable Cout gives the output carry. The eight rows under the input

variables designate all possible combinations of 1s and 0s that these variables

may have. The 1s and 0s for the output variables are determined from the

arithmetic sum of the input bits.

When all the bits are 0s, the output is 0. The S output is equal to 1 when only 1

input is equal to 1 or when all the inputs are equal to 1. The Cout has a carry of 1

if two or three inputs are equal to 1.

Imtiaz Ahammad

From the truth table, a circuit that will produce the correct sum and carry bits in

response to every possible combination of A, B and Cin is described by

S = AˊBˊCin + AˊBCˊin + ABˊCˊin + ABCin

Cout = AˊBCin + ABˊCin + ABCˊin + ABCin

The sum term of the full-adder is the X-OR of A, B and Cin, i.e, the sum bit the

modulo sum of the data bits in that column and the carry from the previous

column. The logic diagram of the full-adder using two X-OR gates and two AND

gates (i.e, two half adders) and one OR gate is

Imtiaz Ahammad

The Full-adder neither can also be realized using universal logic, i.e., either only

NAND gates or only NOR gates as -

NAND Logic

NOR Logic:

Imtiaz Ahammad

3. 4-bit Binary Adder

The 4-bit binary adder performs the addition of two 4-bit numbers.

Let the 4-bit binary numbers, A = A3 A2 A1 A0 and B =B3 B2 B1 B0

We can implement 4-bit binary adder in one of the two following ways.

 Use one Half adder for doing the addition of two Least significant bits and

three Full adders for doing the addition of three higher significant bits.

 Use four Full adders for uniformity. Since, initial carry Cinis zero, the Full

adder which is used for adding the least significant bits becomes Half adder.

For the time being, we considered second approach. The block diagram of 4-bit

binary adder is shown in the following figure.

Here, the 4 Full adders are cascaded. Each Full adder is getting the respective bits

of two parallel inputs A & B. The carry output of one Full adder will be the carry

input of subsequent higher order Full adder. This 4-bit binary adder produces the

Imtiaz Ahammad

resultant sum having at most 5 bits. So, carry out of last stage Full adder will be

the MSB.

In this way, we can implement any higher order binary adder just by cascading

the required number of Full adders. This binary adder is also called as ripple

carry (binary) adder because the carry propagates (ripples) from one stage to

the next stage.

B. Subtractors:
The subtraction of two binary numbers may be accomplished by taking the

complement of the subtrahend and adding it to the minuend. By this, the

subtraction operation becomes an addition operation and instead of having a

separate circuit for subtraction, the adder itself can be used to perform

subtraction. This results in reduction of hardware. In subtraction, each subtrahend

bit of the number is subtracted from its corresponding significant minuend bit to

form a difference bit. If the minuend bit is smaller than the subtrahend bit, a 1 is

borrowed from the next significant position., that has been borrowed must be

conveyed to the next higher pair of bits by means of a signal coming out (output)

of a given stage and going into (input) the next higher stage.

1. The Half-Subtractor
A Half-subtractor is a combinational circuit that subtracts one bit from the other

and produces the difference. It also has an output to specify if a 1 has been

borrowed. It is used to subtract the LSB of the subtrahend from the LSB of the

minuend when one binary number is subtracted from the other.

A Half-subtractor is a combinational circuit with two inputs A and B and two

outputs d and b. d indicates the difference and b is the output signal generated

that informs the next stage that a 1 has been borrowed. When a bit B is subtracted

from another bit A, a difference bit (d) and a borrow bit (b) result according to

the rules given as

The output borrow b is a 0 as long as A≥B. It is a 1 for A=0 and B=1. The d output

is the result of the arithmetic operation2b+A-B.

A circuit that produces the correct difference and borrow bits in response to every

possible combination of the two 1-bit numbers is, therefore,

Imtiaz Ahammad

Diff = Aˊ𝐵+ 𝐴Bˊ and

borr = Ā B

That is, the difference bit is obtained by X-OR ing the two inputs, and the borrow

bit is obtained by ANDing the complement of the minuend with the subtrahend.

Note that logic for this exactly the same as the logic for output S in the half-adder.

A half-subtractor can also be realized using universal logic either using only

NAND gates or using NOR gates as:

NAND Logic:

NOR Logic:

Imtiaz Ahammad

2. The Full-Subtractor:

The half-subtractor can be only for LSB subtraction. IF there is a borrow during

the subtraction of the LSBs, it affects the subtraction in the next higher column;

the subtrahend bit is subtracted from the minuend bit, considering the borrow

from that column used for the subtraction in the preceding column. Such a

subtraction is performed by a full-subtractor. It subtracts one bit (B) from another

bit (A), when already there is a borrow bi from this column for the subtraction in

the preceding column, and outputs the difference bit (d) and the borrow bit(b)

required from the next d and b. The two outputs present the difference and output

borrow. The 1s and 0s for the output variables are determined from the subtraction

of A-B-bi.

From the truth table, a circuit that will produce the correct difference and borrow

bits in response to every possible combinations of A, B and bi is

Imtiaz Ahammad

A full-subtractor can be realized using X-OR gates and AOI gates as

The full subtractor can also be realized using universal logic either using only

NAND gates or using NOR gates as:

NAND Logic:

NOR Logic:

Imtiaz Ahammad

Imtiaz Ahammad

C. Magnitude Comparator

A magnitude comparator compares two numbers A and B and determines their

relative magnitudes. The results of comparison between two numbers are: A > B,

A = B, A < B

Design Approaches: The truth table for two n-bit numbers comparison» 22n

entries - too cumbersome for large n use inherent regularity of the problem

(algorithm approach); algorithm— a procedure which specifies a finite set of

steps, reduce design efforts; reduce human errors.

1. 1-bit Magnitude Comparator:

Imtiaz Ahammad

2. 2-bit Magnitude Comparator

Consider two 4-bit numbers, A = A3 A2 A1 A0, B = B3 B2 B1 B0

 A and B are equal (A = B) if A3 = B3, A2 = B2, A1 = B1, and A0 = B0.

 The equality of each pair of bits can be expressed with an exclusive-NOR

function as:

 xi = Ai Bi + Ai’ Bi’ for i = 0, 1, 2, 3; xi = (Ai’ Bi + Ai Bi’)’; xi = 1 only

if the pair of bits in position i are equal (both are 1 or both are 0). For

Imtiaz Ahammad

equality to exist (A = B), all xi variables must be equal to 1: (A = B) =

x3x2x1x0;To determine whether (A > B) or (A < B), starting from the

MSB, if the two bits are equal, then compare the next lower significant

pair of bits until a pair of unequal bits is reached.

 If the corresponding bit of A is 1 and that of B is 0, we conclude that A >

B.

 If the corresponding digit of A is 0 and that of B is 1, we have A < B.

 The sequential comparison can be expressed by the two Boolean functions

(A > B) = A3B3’ + x3A2B2’ + x3x2A1B1’ + x3x2x1A0B0’

(A < B) = A3’B3 + x3A2’B2 + x3x2A1’B1 + x3x2x1A0’B0

Imtiaz Ahammad

D. DECODER

The output of a digital system is binary coded. A decoder is a circuit that energies

a particular output line or lines depending on the binary code at the input. Thus,

Decoder is a combinational circuit that has ‘n’ input lines and maximum of 2n

output lines. One of these outputs will be active High based on the combination

of inputs present, when the decoder is enabled. That means decoder detects a

particular code. The outputs of the decoder are nothing but the min terms of ‘n’

input variables (lines), when it is enabled.

a. 2 to 4 Decoder:

Let 2 to 4 Decoder has two inputs A1 & A0 and four outputs Y3, Y2, Y1 & Y0.

The block diagram of 2 to 4 decoder is shown in the following figure –

One of these four outputs will be ‘1’ for each combination of inputs when enable,

E is ‘1’. The Truth table of 2 to 4 decoder is shown below –

Imtiaz Ahammad

From Truth table, we can write the Boolean functions for each output as

Y3=E.A1.A0

Y2=E.A1.A0′

Y1=E.A1′.A0

Y0=E.A1′.A0′

The circuit diagram of 2 to 4 decoder is shown in the following figure –

Imtiaz Ahammad

Therefore, the outputs of 2 to 4 decoder are nothing but the min terms of two

input variables A1 & A0, when enable, E is equal to one. If enable, E is zero, then

all the outputs of decoder will be equal to zero.

Similarly, 3 to 8 decoder produces eight min terms of three input variables A2, A1

& A0 and 4 to 16 decoder produces sixteen min terms of four input variables A3,

A2, A1 & A0.

Imtiaz Ahammad

HIGHER DECODER FROM LOWER DECODERS

Example: Obtain a 4 to 16 decoder using a) 2 to 4 decoder (b) 3 to 8

decoder

a) we take abcd2 as the input to the decoder. Following is the diagram to

design 4 to 16 decoder using 2 to 4 decoders

When we have a = 0 & b=0 then top most decoder is enabled and 1 is placed

on the output line out of 0 to 3 based on the value of cd.

When we have a = 0 & b=1 then 2nd decoder from top is enabled and 1 is

placed on the output line out of 4 to 7 based on the value of cd.

When we have a=1 b=0 then 3rd decoder is enabled and 1 is placed on the

output line out of 8 to 11 based on the value of cd.

When we have a=1 b=1 then bottom most decoder is enabled and 1 is

placed on the output line out of 12 to 15 based on the value of cd.

Imtiaz Ahammad

Hence top 4 outputs generate min terms 0000 to 0011, next 4 generates min

terms 0100 to 0111, next generates 1000 to 1011 and the last 4 outputs

generate min terms 1100 to 1111.

b) 4 to 16 Decoder

In this section, let us implement 4 to 16 decoder using 3 to 8 decoders. We know
that 3 to 8 Decoder has three inputs A2, A1 & A0 and eight outputs, Y7 to Y0. Whereas,
4 to 16 Decoder has four inputs A3, A2, A1 & A0 and sixteen outputs, Y15 to Y0

We know the following formula for finding the number of lower order decoders
required.

Required number of lower order decoders =
𝑚2

𝑚1

Where, m1 is the number of outputs of lower order decoder and m2 is the number

of outputs of higher order decoder.

Here, m1 = 8 and m2 = 16. Substitute, these two values in the above formula.

Required number of 2to4 decoders = 16/8 = 2

Therefore, we require two 3 to 8 decoders for implementing one 4 to 16 decoder.

The block diagram of 4 to 16 decoder using 3 to 8 decoders is shown in the

following figure.

Imtiaz Ahammad

c) 3 to 8 Decoder

In this section, let us implement 3 to 8 decoder using 2 to 4 decoders. We know

that 2 to 4 Decoder has two inputs, A1 & A0 and four outputs, Y3 to Y0. Whereas,

3 to 8 Decoder has three inputs A2, A1 & A0 and eight outputs, Y7 to Y0.

We can find the number of lower order decoders required for implementing

higher order decoder using the following formula.

Required number of lower order decoders =
𝑚2

𝑚1

Where, m1 is the number of outputs of lower order decoder and m2 is the number

of outputs of higher order decoder.

Here, m1 = 4 and m2 = 8. Substitute, these two values in the above formula.

Required number of 2to4 decoders = 8/4 = 2

Therefore, we require two 2 to 4 decoders for implementing one 3 to 8 decoder.

The block diagram of 3 to 8 decoder using 2 to 4 decoders is shown in the

following figure.

Imtiaz Ahammad

d. Implementation the Full adder using 3 to 8 decoder.

For full adder, the equation for sum & carry are -

Sum = ab’c’ + a’b’c + a’bc’ + abc = Σ m (1,2,4,7)

Carry = ab + ac + bc = ab (c + c’) + ac (b + b’) + bc (a + a’)

 = abc + abc’ + abc + ab’c + abc + a’bc

 = abc +a’bc +ab’c+abc’ = Σ m (3, 5, 6, 7)

So, we can implement it from decoder using OR gates as follow:

Imtiaz Ahammad

E. Encoder:
Digital circuits operate in a binary manner. So, the information available in the

form of decimal numerals, alphabets or special characters is required to be

converted into suitable binary form before it can be processed digital circuits. For

this a process of coding is employed whereby each numerals, alphabets or special

character is coced in a unique combination of 0s and 1s. The device that can be

used to perform such coding is known as encoder.

An encoder is basically multi inputs and multi outputs digital logic circuit, which

has as many inputs as the number of character to be encoded and as many outputs

as the number of bits in encoded form of characters.

An Encoder is a combinational circuit that performs the reverse operation of

Decoder. It has maximum of 2n input lines and ‘n’ output lines. It will produce a

binary code equivalent to the input, which is active High. Therefore, the encoder

encodes 2n input lines with ‘n’ bits. It is optional to represent the enable signal in

encoders.

a. 4 to 2 Encoder

Let 4 to 2 Encoder has four inputs Y3, Y2, Y1 & Y0 and two outputs A1 & A0. The

block diagram of 4 to 2 Encoder is shown in the following figure.

The Truth table of 4 to 2 encoder is shown below –

Imtiaz Ahammad

From Truth table, we can write the Boolean functions for each output as

A1 = Y3 + Y2

A0 = Y3 + Y1

We can implement the above two Boolean functions by using two input OR gates.

The circuit diagram of 4 to 2 encoder is shown in the following figure –

b. Decimal to BCD Encoder

This type of encoder usually consists of ten input lines and 4 output lines. Each

input line corresponds to each decimal digit and 4 outputs correspond to the BCD

code.

This encoder accepts the decoded decimal data as an input and encodes it to the

BCD output which is available on the output lines.

Imtiaz Ahammad

The figure below shows the basic logic symbol of decimal to BCD encoder along

with its truth table. The truth table represents the BCD code for each decimal

digit.

From this we can formulate the relationship between the BCD bit and decimal

digit. It is important to note that there is no explicit input line for decimal zero.

When this condition occurs, i.e., decimal inputs 1 to 9 all are zero, then the BCD

output is 0000.

From the above table, we get the expressions as

Y3 = D8 + D9

Y2 = D4 + D5 + D6 + D7

Y1 = D2 + D3 + D6 + D7

Y0 = D1 + D3 + D5 + D7 + D9

From the above expressions, the decimal to BCD encoder logic circuit can be

implemented by using set of OR gates as shown in below figure –

Imtiaz Ahammad

F. Multiplexer

Multiplexer is a combinational circuit that has maximum of 2n data inputs, ‘n’

selection lines and single output line. One of these data inputs will be connected

to the output based on the values of selection lines.

Since there are ‘n’ selection lines, there will be 2n possible combinations of zeros

and ones. So, each combination will select only one data input.

4x1 Multiplexer:

4x1 Multiplexer has four data inputs I3, I2, I1 & I0, two selection lines s1 & s0

and one output Y. The block diagram of 4x1 Multiplexer is shown in the

following figure –

One of these 4 inputs will be connected to the output based on the combination

of inputs present at these two selection lines. Truth table of 4x1 Multiplexer is

shown below –

Imtiaz Ahammad

From Truth table, we can directly write the Boolean function for output, Y as

Y = S1′ S0′ I0 + S1′ S0 I0 + S1 S0′ I2 + S1 S0 I2

We can implement this Boolean function using Inverters, AND gates & OR gate.

The circuit diagram of 4x1 multiplexer is shown in the following figure –

Imtiaz Ahammad

HIGHER MUXes FROM LOWER MUXes

Example 1: Implement - a) 8 to 1 MUX and b) 16 to 1 MUX using 4 to

1 MUX.

Ans: a) Select lines are abc2

Following is the 8 to 1 multiplexer from 4 to 1 multiplexer

b) Select lines are abcd2

Following is the circuit for 16 to 1 MUX

Imtiaz Ahammad

Example 2: 4: 1 MUX using 2: 1 MUX

Implementation any Boolean function using MUX

While implementing any function using MUX, if we have N variables in the

function then we take (N-1) variables on the selection lines and 1 variable is

used for inputs of MUX. As we have N-1 variables on selection lines we need

to have 2 N-1 to 1 MUX. We just have to connect A, A’, 0 or 1 to different input

lines.

1. Half Adder using 4 to 1 Multiplexer:

Hare, A & B are the inputs and S & C are the outputs. Now implementation

function for sum and carry out are as followes.

Sum (A, B) = ∑ m (1,2)

Carry (A, B) = ∑ m (3)

Imtiaz Ahammad

2. Half Subtractor using 4 to 1 Multiplexer:

Hare, A & B are the inputs and Diff & Borr are the outputs. Now implementation

function for difference and borrow are as follows -

Diff (A, B) = ∑ m (1,2)

Borr (A, B) = ∑ m (1)

3. Full Adder using 4 to 1 Multiplexer:

Multiplexer is also called a data selector, whose single output can be connected

to anyone of N different inputs. A 4 to 1-line multiplexer has 4 inputs and 1 output

line.

Hare, A,B,Cin are the inputs and S & Cout are the outputs. Now implementation

function for sum and carry out are as follows

S(A,B,Cin)= ∑(1,2,4,7)

Cout(A,B,Cin)= ∑(3,5,6,7)

Imtiaz Ahammad

For sum out:

For carry out:

Logic Diagram for Sum out using MUX –

Logic Diagram for Carry out using MUX –

Imtiaz Ahammad

Example 1: To implement the function F(A, B, C)= Σ (1, 2, 5, 7) using (a)8

to 1 MUX (b)4 to 1 MUX

Ans: We can implement it using all three variables at selection lines. We put 1

on the min term lines which are present in functions and 0 on the rest.

Example 2: F= A’B’C + A’BC’ + AB’C + ABC

N=3 so we use 2 N-1 = 2 2 = 4 to 1 MUX.

Suppose we have B, C on the selection lines. So, when we have BC = 00, put

B = 0, C = 0 in the function and we see output of the function should be 0 hence

we connect 0 to 0th input line.

When BC = 01, then output of the function should be A’+ A = 1. Hence, we

connect 1 to 1st line.

When BC =10, then output of the function should be A’. Hence we connect A’ to

2nd line.

When BC = 11, then output of the function should be A. Hence, we connect A to

3rd line.

Hence, we have the circuit as:

Imtiaz Ahammad

Another procedure to implement the function using MUX

 Take one variable for input lines and rest of the term for selection lines.

 Then list the min terms with the variable selected in complimented form

in 1st row and list the

 The min terms with variable selected in un-complimented form in

2nd row.

 Then encircle the min terms which are present in the function.

 If we have no circled variable in the column, then we put 0 on the

corresponding line

 If we have both circled variables, then we put 1 on the line

 If bottom variable is circled and top is not circled, apply A to input

line

 If bottom variable is not circled and top is circled, apply A’ to input

line

Example 3: To implement the function F (A, B, C) = Σ (1, 2, 5, 7) using

MUX.

Let’s now take the variable A for input lines and B & C for selection lines.

So, we list the min terms as follow:

So, the circuit is -

Imtiaz Ahammad

Example 4: To implement the function F(A, B, C, D)= Σ (1, 2, 5, 7, 9,

14) using MUX using different variable as selection variable.

Let’s now take the variable A for input lines and B, C & D for selection

lines.

N=4 so MUX is 2 N-1= 23 = 8 to 1

So, min terms with A in compliment form are 0 – 7

So, min terms with A in un-compliment form are 8 – 15

So, we list the MIN TERMS as:

And the circuit diagram is shown below:

Imtiaz Ahammad

G. De-Multiplexer:
The Demultiplexer is a combinational circuit having a single input and many

outputs. It performs the reverse operation of a Multiplexer. It has single input, ‘n’

selection lines and maximum of 2n outputs. The input will be connected to one of

these outputs based on the values of selection lines.

Since there are ‘n’ selection lines, there will be 2n possible combinations of zeros

and ones. So, each combination can select only one output. De-Multiplexer is also

called as De-Mux.

1x4 De-Multiplexer :

1x4 De-Multiplexer has one input I, two selection lines, s1 & s0and four outputs

Y3, Y2, Y1 &Y0. The block diagram of (1 x 4) De-Multiplexer is shown in the

following figure

The single input ‘I’ will be connected to one of the four outputs, Y3 to Y0 based

on the values of selection lines S1 & S0. The Truth table of 1x4 De-Multiplexer

is shown below –

Imtiaz Ahammad

From the above Truth table, we can directly write the Boolean functions for each

output as

Y3 = S1 S0 I

Y2 = S1 S0 ́I

Y1 = S1 ́S0 I

Y0 = S1 ́S0ˊ I

We can implement these Boolean functions using Inverters & 3-input AND gates.

The circuit diagram of 1x4 De-Multiplexer is shown in the following figure -

	b) 4 to 16 Decoder
	b. Decimal to BCD Encoder

