CARBON DIOXIDE TRANSPORT

In lowly organized animals with a small oxygen requirement only a small amount of CO_2 is produced as a bye-product of biological oxidation. In these animals, CO_2 is kept as solution till its disposal through the respiratory surface. But in higher animals, increased amount of CO_2 is produced due to increased activity with an increased demand of oxygen. Hence an efficient transport of CO_2 to the respiratory surface facilitating its quick removal is required. The CO_2 transport takes place by the corpuscles as well as by the plasma. CO_2 is 30 times more suitable in water than oxygen. During CO_2 transport by the plasma, blood functions as buffer solution and does not allow any great fluctuations in the pH value and hence does not become acidic.

The CO_2 produced in the tissues is transported to the lungs or gills, where it is exchanged by diffusion. Little of the CO_2 is in physical solution in the plasma, but rather is largely found in reversible chemical combinations, both in plasma and in the erythrocytes.

FACTS ABOUT CO2 TRANSPORT

- 1. CO₂TENSION IN ARTERIAL BLOOD- 40 mm Hg.
- 2. CO₂ TENSION IN VENOUS BLOOD- 45 mm Hg.
- 3. ARTERIAL CO₂CONTENT-48ml/100 ml
- 4. VENOUSCO₂CONTENT-52ml/100 ml
- 5. So, 100 ml of blood transports 4 ml of CO₂ from the tissues

CHEMICAL FORMS IN WHICH CO2 IS TRANSPORTED

A. TRANSPORT OF CO2IN THE DISSOLVED STATE

A small portion of the CO_2 is transported in the dissolved state to the lungs. Only about 0.3 milliliter of CO_2 is transported in the form of dissolved CO_2 by each 100 milliliters of blood. This is only 7% of all the CO_2 normally transported.

B. TRANSPORT OF CO2 IN THE FORM OF BICARBONATE ION

- 1. This is the principal form (70%) in which CO₂ is transported.
- CO₂reacts with water to form H₂CO₃which breaks down into H⁺ and HCO₃⁻. However, in plasma, the reaction is too slow to be of any importance.
- 3. But this reaction proceeds with much greater speed inside the RBC due to two reasons:
 - i. Presence of the enzyme carbonic anhydrase.
 - ii. Presence od Hb- a proton acceptor in tissues.
- 4. Dissolved CO₂in the bloodreacts with water to form carbonic acid. This reaction would occur much too slowly to be of importance were it not for the fact that inside the red blood cell is a protein enzyme called carbonic anhydrase, which catalyzes the reaction between CO₂ and water, accelerating its reaction rate about 5000-fold. Instead of requiring many seconds or minutes to occur, as is true in the plasma, the reaction occurs so rapidly in the red blood cells that it reaches almost complete equilibrium within a very small fraction of a second. This allows tremendous amounts of CO₂to react with red blood cell water even before the blood leaves the tissue
- 5. In another fraction of a second, the carbonic acid formed in red blood cells (H_2CO_3) dissociates into hydrogen and bicarbonate ions (H^+ and HCO_3^-).
- 6. Most of the hydrogen ions then combine with the hemoglobin in the red blood cells because the hemoglobin protein is a powerful acid-base buffer.

- 7. As the reaction proceeds, there is gradual accumulation of HCO_3^{-} inside the RBC. Since the rise in the HCO_3^{-} content of red cells is much greater than in the plasma, about 70% of the HCO_3^{-} now comes out of the RBC into the plasma along the concentration gradient. This upsets the electrical balance of the cell interior.
- 8. Chloride ion (Cl⁻⁾ now moves into the RBC from the plasma to restore electroneutrality, i.e., HCO₃⁻leaves the red blood cells in exchange for Cl⁻
- 9. This is made possible by the presence of a special bicarbonate-chloride carrier protein in the red cell membrane that shuttles these 2 ions in opposite directions at rapid velocities.

Thus, the chloride content of venous red blood cells is greater than that of arterial red blood cells, a phenomenon called the **chloride shift.**The chloride shift occurs rapidly and is essentially completed in 1 second.

10. The process of movement of excess HCO_3^- in exchange of Cl⁻is mediated by **Band 3**, a major membrane protein. Note- The reversible combination of CO_2 with water in the red blood cells under the influence of carbonic anhydrase account for about 70% of the CO₂ transported from the tissues to the lungs. Thus, this means of transporting CO₂ is by far the most important of all the methods for transport. Indeed, when a carbonic anhydrase inhibitor, acetazolamide is administered to animal to block the action of carbonic anhydrase in the red blood cells, CO₂ transport from the tissues become so poor, that the tissue P CO₂ can be made to rise to 80 mm Hg instead of the normal 45 mm Hg.

C. TRANSPORT OF CO₂ IN COMBINATION WITH HEMOGLOBIN AND PLASMA PROTEIN CARBAMINOHEMOGLOBIN

- 1. In addition to reacting with water, CO₂reacts directly with amine radicals of the hemoglobin molecule to form the compound carbaminohemoglobin (CO₂Hgb). This combination of CO₂with the hemoglobin is a reversible reaction that occurs with a loose bond, so that the CO₂is easily released into the alveoli, where the P CO₂is lower than in the tissue capillaries.
- 2. A small amount of CO_2 also reacts in the same way with the plasma proteins, but this is much less significant because the quantity of these proteins is only one fourth as great as the quantity of hemoglobin.

REVERSE CHLORIDE SHIFT

- 1. In the lungs, the opposite sequence of reaction occurs, the hemoglobin is oxygenated.
- 2. HbO₂ is more acidic and releases H^+ ions inside the RBC, which combine with HCO₃ to form H_2CO_3 .
- 3. H₂CO₃liberates CO₂which escapes through lungs.
- 4. As HCO₃ inside the RBC has become low, HCO₃ from the plasma now enters into RBC.
- 5. In exchange of this HCO_3^- , Cl^- moves out from the RBC into the plasma to maintain electroneutrality. This is therefore, termed as **reverse chloride shift.**

HALDANE EFFECT

Release of oxygen in the tissues from HbO_2 with the formation of reduced Hb stimulates uptake of CO_2 by RBC. This is known as **Haldane effect**.

This is due to two reasons:

- 1. Deoxygenated Hb binds more CO₂as carbaminohemoglobin.
- 2. Reduced hemoglobin is less acidic and therefore acts as a stronger proton acceptor. So, when oxygen is released in tissues forming reduced hemoglobin, this can mop up more H⁺ and move the reaction.

 CO_2 + H_2O = H_2CO_3 = H^+ + HCO_3 in rightward direction. This leads to greater uptake of CO_2 .

Thus, Haldane Effect facilitates the uptake of CO_2 in the tissues and its release in the lungs.