
BIPOLAR JUNCTION TRANSISTOR II

Dipanwita Das
Assistant Professor
Department of Physics

$$V_{BE}$$
= 0.7 V, as emitter is grounded V_B = 0.7V

$$V_{BB} = I_B R_B + V_{BE}$$

 $2 \text{ V} = I_B 100 \text{k} + 0.7 \text{V}$
 $I_B = \frac{2 - 0.7}{100} \times 10^{-3} \text{ amp}$
 $I_B = 13 \mu A$

$$I_C = \beta I_B = 100 \times 13 \ \mu A = 1.3 mA$$

 $V_{CC} = I_C R_C + V_{CE} \Rightarrow V_{CE} = V_{CC} - I_C R_C = 10 - 1.3 = 8.7 V$
 $V_{BC} = V_B - V_C = 0.7 - 8.7 = -8 V$

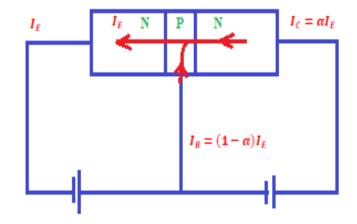
Thus the collector-base junction is reverse biased.

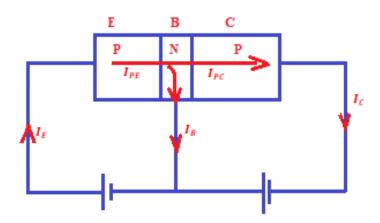
Three primary currents which flow across the forward biased emitter junction and reverse biased collector junction are I_E , I_B , and I_C

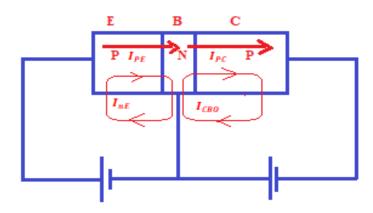
$$I_E = I_B + I_C$$

$$Also $I_C = \alpha I_E$

$$I_B = I_E - I_C$$


$$= (1 - \alpha)I_E$$


$$= (1 - .98)I_E$$


$$= 0.02I_E$$$$

So considering the current due to the majority carriers, the emitter current split into two parts

(i) $(1-\alpha)I_E$ which becomes base current I_B in the external circuit, and (ii) αI_E which becomes collector current I_C in the external circuit.

In PNP transistor collector-base junction is reverse biased for majority charged carriers but it is forward biased for thermally generated minority carriers.

The current flow in the same direction of $I_{\mathcal{C}}$ due to the minority carriers, called leakage current and denoted by I_{CBO} .

This current flows even when emitter is disconnected from the dc supply source This current is extremely temperature dependent

Similarly I_{nE} flows in the emitter base junction

The emitter current I_E consists of the hole current I_{pE} and electron current I_{nE}

$$i.e. I_E = I_{pE} + I_{nE}$$

The collector current I_C consists of I_{pC} and the temperature dependent current I_{CBO} due to the minority carriers

$$i.e. I_C = I_{pC} + I_{CBO}$$
$$= \alpha I_E + I_{CBO}$$

Thus
$$\alpha = \frac{I_C - I_{CBO}}{I_E}$$

 I_B depends on I_{pE} , I_{pC} , I_{nE} , I_{CBO}

Emitter efficiency, $\gamma = \frac{current\ of\ injected\ carriers\ from\ the\ emitter}{2}$

$$= \frac{I_{pE}}{I_{pE} + I_{nE}}$$

$$= \frac{I_{pE}}{I_{E}}$$

We may say $I_{pE}\gg I_{nE}$

$$\gamma = \frac{1}{(1 + \frac{I_{nE}}{I_{nE}})} = 1 - \frac{I_{nE}}{I_{pE}}$$

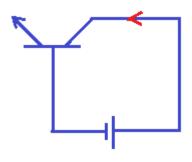
Transport factor β^{\bullet} , also known as base transport factor

$$\beta^* = \frac{\textit{injected carrier current reaching collector junction}}{\textit{injected carrier current at emitter junction}}$$

$$= \frac{l_{pC}}{l_{pE}}$$

The collector efficiency, δ is the ratio of the current crossing the collector junction to the current arriving at the base side of the junction

We know


$$\alpha = \frac{I_{C} - I_{CBO}}{I_{E}}$$

$$= \frac{I_{pC}}{I_{E}}$$

$$= \frac{I_{pC}}{I_{pE}} \times \frac{I_{pE}}{I_{E}} = \beta^{*} \cdot \gamma$$

LEAKAGE CURRENTS

1.COLLECTOR TO BASE LEAKAGE CURRENT(I_{CBO})

The collector current I_C consists of

(i)The part of emitter current $I_{\cal E}$ which reaches the collector, and

(ii)The collector—base leakage current I_{CBO} or I_{CO}

Thus the part of l_E which reaches collector is equal to $l_C - l_{CBO}$

$$\alpha = \frac{l_C - l_{CBO}}{l_E}$$

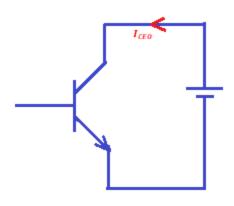
$$I_C = \alpha I_E + l_{CBO}$$

We know

$$I_E = I_C + I_B$$

Therefore

$$I_{C} = \alpha(I_{C} + I_{B}) + I_{CBO}$$


$$I_{C}(1 - \alpha) = \alpha I_{B} + I_{CBO}$$

$$I_{C} = \frac{\alpha}{1 - \alpha} I_{B} + \frac{1}{1 - \alpha} I_{CBO}$$

$$I_{C} = \beta I_{B} + (\beta + 1) I_{CBO}$$

2.COLLECTOR TO EMITTER LEAKAGE CURRENT(I_{CEO})

When base is open circuited and collector is reverse biased with respect to emitter,

a small current I_{CEO} flows from collector to emitter.

The collector current consists of

- (i)The part of the emitter current I_E which reaches the collector, and
- (ii)The collector emitter leakage current I_{CEO} The part of I_E , which reaches collector is I_C-I_{CEO} Thus when leakage current is taken into consideration the equation for β can be written as

$$\beta = \frac{I_C - I_{CEO}}{I_B}$$

$$I_C = \beta I_B + I_{CEO}$$

$$I_C = \beta I_B + (\beta + 1)I_{CBO}$$

Also we have

Equating

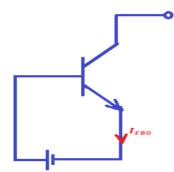
$$I_{CEO} = (\beta + 1)I_{CBO}$$

We know the relation between α and β as

$$\beta = \frac{\alpha}{1 - \alpha}$$

Let us take some values of α and calculate corresponding value of $oldsymbol{eta}$

α	β
0.9	9
0.95	19
0.99	99
0.995	199
0.999	999

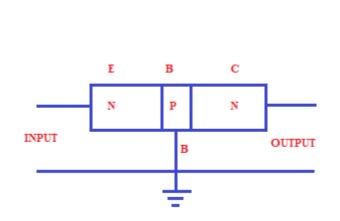

Thus a change in α by 1% introduces a large change in β . The leakage current I_{CBO} of the reverse biased collector base junction changes greatly with temperature. An increase in temperature increases the value of I_{CBO} since $I_C = \beta I_B + (\beta + 1) I_{CBO}$. An increase in I_{CBO} increases I_C . The increase of I_C increases the power dissipation at the

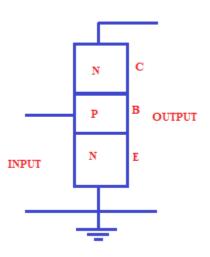
collector junction and thereby increases the junction temperature.

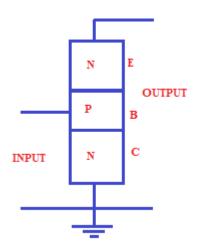
The increase of temperature further increases I_{CRO}

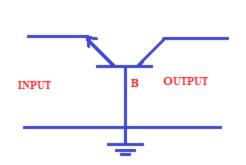
3.EMITTER TO BASE LEAKAGE CURRENT(I_{EBO})

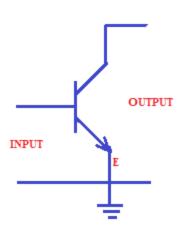
When the collector is open circuited and the emitter base junction is reverse biased, a small emitter current flows through the emitter base junction.




CHARACTERISTICS OF TRANSISTOR


The method of connection of a transistor into a circuit largely affects input and output impedances, and characteristics of the transistor will vary according to the method of connection


The three methods of connections are


- (i)Common base
- (ii)Common emitter, and
- (iii)Common collector

