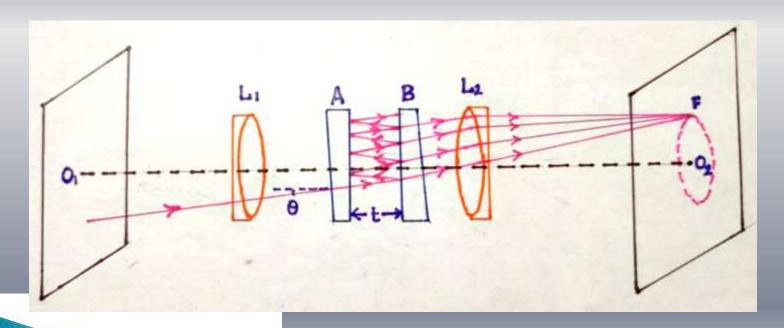
FABRY- PEROT INTERFEROMETER

Dipanwita Das
Assistant Professor
Department of Physics
Dinabandhu Andrews College

CONSTRUCTION

Fabry-Perot interferometer consists of two glass plates A and B separated by a distance. The inner surfaces of the plates are optically plane, exactly parallel and thin silvered so that about 70% of incident light gets reflected. The outer faces of the plates are also parallel to each other, but inclined to their respective inner faces.



If θ is the angle of incidence on the silvered face of A, then, the path difference between successive rays is

 $2\mu t cos \theta = 2 t cos \theta as \mu = 1$ for air For bright fringe

$$2 t \cos \theta = n\lambda$$
, n = 0, 1, 2, 3, 4,....

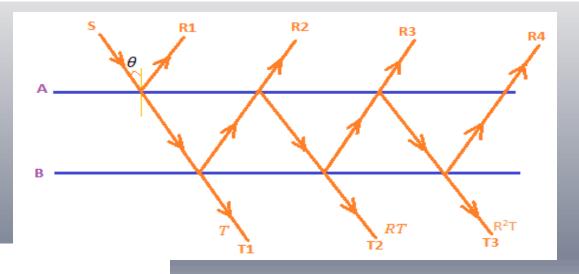
For all points passing through F with centre at O_2 on the axis O_1 O_2

When t is decreased, the ring shrinks and disappears at the centre. For a decrease of $\lambda/2$, one ring disappear at the centre.

Consider a plane wave of unit amplitude incident at an angle θ on the glass plate.

Due to multiple reflections, a set of parallel reflected rays A_1R_1 , A_2R_2 , A_3R_3 ,...., and a set of parallel transmitted rays B_1T_1 , B_2T_2 , B_3T_3 ,....are produced.

The amplitudes of $B_1T_1, B_2T_2, B_3T_3,...$ are T, RT, $R^2T, R^3T,...$ respectively.



Neglecting the small phase change due to reflection from silvered surfaces, the phase difference between two consecutive transmitted rays

$$\delta = \frac{2\pi}{\lambda} \times 2t \cos\theta = \frac{4\pi t \cos\theta}{\lambda}$$

Let the incident wave be represented by

 $y = a \sin \omega t = \sin \omega t$ (a is assumed to be unity)

So, the transmitted rays can be represented as

$$y_1 = T \sin \omega t$$

 $y_2 = RT \sin(\omega t - \delta)$
 $y_3 = R^2 T \sin(\omega t - 2\delta)$, and so on

From the superposition principle

$$Y = y_1 + y_2 + y_3 + \cdots$$

If A be the resultant amplitude of these rays and φ be the phase difference, then we may write

A sin (
$$\omega t - \phi$$
) = T sin $\omega t + RT \sin(\omega t - \delta) + R^2 T \sin(\omega t - 2\delta) + ...$

A sin $\omega t \cos \phi - A \cos \omega t \sin \phi = T \sin \omega t + R T \sin \omega t \cos \delta - RT \cos \omega t \sin \delta + R^2 T \sin \omega t \cos 2\delta + R^2 T \cos \omega t \sin 2\delta +$

Equating the coefficients of sin ω t and cos ω t on both sides, we get A cos $\phi = T + RT \cos \delta + R^2T \cos 2\delta + ...$ A sin $\phi = RT \sin \delta + R^2T \sin 2\delta + ...$

The resultant Intensity

$$I = A^2 = (A\cos\phi + iA\sin\phi) \times (A\cos\phi - iA\sin\phi)$$

A cos ϕ + iA sin ϕ = T + RT(cos δ +i sin δ) + $R^2T(\cos 2\delta + i\sin 2\delta)$ + ...

Which in terms of exponential can be put as A cos ϕ + IA sin ϕ = T + RT $e^{i\delta}$ + $R^2Te^{2i\delta}$ + ... =T(1+R $e^{i\delta}$ + $R^2e^{2i\delta}$ + ...)

Similarly,

A
$$\cos \phi$$
 - IA $\sin \phi = \frac{T}{1-Re^{-l\delta}}$

The resultant intensity,

$$I = A^{2} = \frac{T}{1 - Re^{i\delta}} \times \frac{T}{1 - Re^{-i\delta}}$$

$$= \frac{T^{2}}{1 + R^{2} - 2R\cos\delta}$$

$$= \frac{T^{2}}{(1 - R)^{2} + 2R - 2R\cos\delta}$$

$$= \frac{T^{2}}{(1 - R)^{2} + 2R(1 - \cos\delta)}$$

$$= \frac{T^{2}}{(1 - R)^{2} + 4R\sin^{2}\delta/2}$$

$$= \frac{T^{2}}{(1 - R)^{2}[1 + \frac{4R}{(1 - R)^{2}}\sin^{2}\frac{\delta}{2}]}$$

This expression is known as Airy's formula, shows that the resultant intensity depends upon the properties of the silver coating and δ .