APPLICATION OF HUYGEN’S CONSTRUCTION

I. TO SHOW THAT FOR REFLECTRION IN A PLANE MIRROR THE OBJECT DISTANCE IS EQUAL TO THE IMAGE DISTANCE.

Fig. 3.1. Reflection in a plane mirror
Let light travel from a source through a homogenous and isotropic medium.
$\mathrm{MN} \rightarrow$ Plane mirror
$S \rightarrow$ Source or object
$\mathrm{O} \rightarrow$ Midpoint of MN
OS \rightarrow Object distance
LOP \rightarrow Incident spherical wave front with centre S
$M B N \rightarrow$ Position of spherical wave front centered at S after time, ' t ' if the mirror hadn't been there.
$O B=c t$, where ' c ' is the velocity of light in the concerned medium
MAN \rightarrow Position of the spherical wave front centered at Qforthe wave reflected from the mirror after time, ' t '

OQ \rightarrow Image distance
$\mathrm{OA}=\mathrm{ct}$, as the wave returns to the same medium through which it was incident.

Since the medium is homogenous the reflected wave front is also spherical with centre at Q . So Q is the image of S.

From the geometry of the figure: Considering the arc MBN

$$
(2 \mathrm{SB}-\mathrm{OB}) \cdot \mathrm{OB}=\mathrm{MO}^{2}
$$

Assuming the distance SO to be large compared to the dimension of the mirror : OA $\ll O S$, which gives-

$$
\begin{equation*}
20 \mathrm{~S} . \mathrm{OB}=\mathrm{MO}^{2} \tag{3.1}
\end{equation*}
$$

Similarly considering arc MAN

$$
\begin{equation*}
\text { 2OQ.OA = } \mathrm{MO}^{2} \tag{3.2}
\end{equation*}
$$

Now $O A=O B=c t$ \qquad
From equations (3.1), (3.2) and (3.3)

$$
O S=O Q
$$

Or object distance = image distance

II . TO FIND THE EQUATION OF REFLECTION AT A SPHERICAL SURFACE.

a) Reflection at concave spherical surface

Fig. 3.2. Reflection at a concave spherical surface
Let light travel from a source through a homogenous and isotropic medium.
$\mathrm{MN} \rightarrow$ Concave mirror centered at C
$\mathrm{OC} \rightarrow$ Radius of curvature $=-\mathrm{r}$
$S \rightarrow$ Source or object
$\mathrm{O} \rightarrow$ Midpoint of MN
OS \rightarrow Object distance $=-\mathrm{u}$
XOY \rightarrow Incident spherical wave front with centre S
AGB \rightarrow Position of the spherical wave front centered at Q for the wave reflected from the mirror after time, ' t '
$\mathrm{OQ} \rightarrow$ Image distance $=-\mathrm{v}$
$X D, A E \rightarrow$ Perpendiculars, from X and A respectively, on the principal axis. For a mirror of small aperture and large radius of curvature $\mathbf{X D} \approx \mathbf{A E}$
$O G=X A=Y B=D E=c t$, where ' c ' is the velocity of light in the concerned medium
From the geometry of the figure: Considering the arc XOY

$$
(2 O S-O D) \cdot O D=X D^{2}
$$

For a mirror of large radius of curvature and small aperture : OD \ll OS, which gives:

$$
\text { 2OS.OD }=X D^{2}
$$

Or $\quad O D=\frac{X D^{2}}{2 O S}=-\frac{X D^{2}}{2 u}$
Similarly, considering AGB

$$
\text { 2GS.GE }=\mathrm{AE}^{2}
$$

As AGB has a large radius so compared to it the points G and O are almost overlapping. So $G S=$ OS and, which gives:

$$
\begin{gather*}
\text { 2OQ. } G E=A E^{2} \\
\text { Or } \quad G E=\frac{A E^{2}}{2 O Q}=-\frac{A E^{2}}{2 v} \tag{3.6}
\end{gather*}
$$

Similarly considering arc AOB

$$
\begin{align*}
\text { 2OC. } O E=A E^{2} \\
\text { Or } \quad O E=\frac{A E^{2}}{2 O C}=-\frac{A E^{2}}{2 r} \tag{3.7}
\end{align*}
$$

Now: $\mathrm{OD}=\mathrm{OE}+\mathrm{ED}=\mathrm{OE}+\mathrm{OG}=\mathrm{OE}+(\mathrm{OE}-\mathrm{GE})$
Or $\quad O D+G E=2 O E$
So from equations (3.5), (3.6) and (3.7)
Or $\quad-\frac{\mathrm{XD}^{2}}{2 \mathrm{u}}-\frac{\mathrm{AE}^{2}}{2 \mathrm{v}}=-\frac{2 \mathrm{AE}^{2}}{\mathrm{r}}$
Applying equation (3.4)

$$
-\frac{\mathrm{AE}^{2}}{2 \mathrm{u}}-\frac{\mathrm{AE}^{2}}{2 \mathrm{v}}=-\frac{2 \mathrm{AE}^{2}}{2 \mathrm{r}}
$$

Or $\quad-\frac{1}{2 u}-\frac{1}{2 v}=-\frac{2}{2 r}$
O $\quad-\frac{1}{\mathrm{u}} \quad-\frac{1}{\mathrm{v}}=-\frac{2}{\mathrm{r}}$
Or $\quad \frac{1}{u}+\frac{1}{v}=\frac{2}{r}$

Equation (3.8) gives the equation of reflection for a concave reflecting surface.
a) Reflection at convex spherical surface

Fig. 3.2. Reflection at a concave spherical surface
$\mathrm{MN} \rightarrow$ Convex mirror centered at C
$\mathrm{OC} \rightarrow$ Radius of curvature $=r$
$S \rightarrow$ Source or object
$\mathrm{O} \rightarrow$ Midpoint of MN
OS \rightarrow Object distance $=-\mathrm{u}$
XOY \rightarrow Incident spherical wave front with centre S
AGB \rightarrow Position of the spherical wave front centered at Q for the wave reflected from the mirror after time, ' t '
$\mathrm{OQ} \rightarrow$ Image distance $=\mathrm{v}$
$X D, A E \rightarrow$ Perpendiculars, from X and A respectively, on the principal axis. For a mirror of small aperture and large radius of curvature $\mathbf{X D} \approx \mathbf{A E}$ \qquad
$O G=X A=Y B=D E=c t$, where ' c ' is the velocity of light in the concerned medium.
From the geometry of the figure: Considering the arc XOY

$$
(2 O S-O D) \cdot O D=X D^{2}
$$

For a mirror of large radius of curvature and small aperture : OD \ll OS, which gives:

$$
\begin{gather*}
\text { 2OS.OD }=X D^{2} \\
\text { Or } \quad O D=\frac{X D^{2}}{2 O S}=-\frac{{X D^{2}}_{2}^{2 u}}{} \tag{3.10}
\end{gather*}
$$

Similarly, considering AGB

$$
2 \mathrm{GS} \cdot \mathrm{GE}=\mathrm{AE} \mathrm{E}^{2}
$$

As AGB has a large radius so compared to it the points G and O are almost overlapping. So $G S=$ OS and, which gives:

$$
\text { 2OQ. } G E=A E^{2}
$$

Or $\quad \mathrm{GE}=\frac{\mathrm{AE}^{2}}{2 \mathrm{OQ}}=\frac{\mathrm{AE}^{2}}{2 \mathrm{v}}$
Similarly considering arc AOB
2OC.OE $=A E^{2}$

Or $\quad \mathrm{OE}=\frac{\mathrm{AE}^{2}}{2 \mathrm{OC}}=\frac{\mathrm{AE}^{2}}{2 \mathrm{r}}$
Now: $\mathrm{OD}=\mathrm{ED}-\mathrm{OE}=\mathrm{OG}-\mathrm{OE}=(\mathrm{GE}-\mathrm{OE})-\mathrm{OE}$
Or $\quad O D-G E=-2 O E$
So from equations (3.10), (3.11) and (3.12)

$$
-\frac{\mathrm{XD}^{2}}{2 \mathrm{u}}-\frac{\mathrm{AE}^{2}}{2 \mathrm{v}}=-\frac{2 \mathrm{AE}^{2}}{2 \mathrm{r}}
$$

Applying equation (3.9)

$$
-\frac{\mathrm{AE}^{2}}{2 \mathrm{u}}-\frac{\mathrm{AE}^{2}}{2 \mathrm{v}}=-\frac{2 \mathrm{AE}^{2}}{2 \mathrm{r}}
$$

Or $\quad-\frac{1}{2 u}-\frac{1}{2 v}=-\frac{2}{2 r}$
$\mathrm{O} \quad-\frac{1}{\mathrm{u}} \quad-\frac{1}{\mathrm{v}}=-\frac{2}{\mathrm{r}}$
Or

$$
\begin{equation*}
\frac{1}{u}+\frac{1}{v}=\frac{2}{r} \tag{3.13}
\end{equation*}
$$

Equation (3.8) gives the equation of reflection for a convex reflecting surface.
Thus it is found that whatever be the nature of the spherical reflecting surface the equation of reflaction is always :

$$
\frac{1}{u}+\frac{1}{v}=\frac{2}{r}
$$

