APPLICATION OF HUYGEN'S CONSTRUCTION

I. TO SHOW THAT FOR REFLECTRION IN A PLANE MIRROR THE OBJECT DISTANCE IS EQUAL TO THE IMAGE DISTANCE.

Fig. 3.1. Reflection in a plane mirror

Let light travel from a source through a homogenous and isotropic medium.

- $\rm MN \rightarrow Plane\ mirror$
- $S \rightarrow Source \text{ or object}$
- $O \rightarrow Midpoint of MN$
- $OS \rightarrow Object distance$
- $LOP \rightarrow$ Incident spherical wave front with centre S

MBN \rightarrow Position of spherical wave front centered at S after time, 't' if the mirror hadn't been there.

OB = ct, where 'c' is the velocity of light in the concerned medium

 $MAN \rightarrow Position$ of the spherical wave front centered at Qforthe wave reflected from the mirror after time, 't'

 $OQ \rightarrow Image distance$

OA = ct , as the wave returns to the same medium through which it was incident.

Since the medium is homogenous the reflected wave front is also spherical with centre at Q. So Q is the image of S.

From the geometry of the figure: Considering the arc MBN

(2SB - OB).OB = MO²

Assuming the distance SO to be large compared to the dimension of the mirror : OA << OS, which gives-

2OS.OB = MO²(3.1)

Similarly considering arc MAN

 $20Q.OA = MO^2$ (3.2)

Now OA = OB = ct(3.3)

```
From equations (3.1), (3.2) and (3.3)
```

OS = OQ

Or **object distance = image distance**

II. TO FIND THE EQUATION OF REFLECTION AT A SPHERICAL SURFACE.

a) Reflection at concave spherical surface

Fig. 3.2. Reflection at a concave spherical surface

Let light travel from a source through a homogenous and isotropic medium.

 $\rm MN \rightarrow Concave \ mirror \ centered \ at \ C$

 $OC \rightarrow Radius of curvature = -r$

 $S \rightarrow Source \ or \ object$

 $\mathsf{O} \to \mathsf{Midpoint} \text{ of } \mathsf{MN}$

 $\text{OS} \rightarrow \text{Object distance}$ = -u

 $XOY \rightarrow$ Incident spherical wave front with centre S

 $AGB \rightarrow Position$ of the spherical wave front centered at Q for the wave reflected from the mirror after time, 't'

 $OQ \rightarrow Image \ distance = -v$

XD, AE \rightarrow Perpendiculars, from X and A respectively, on the principal axis. For a mirror of small aperture and large radius of curvature **XD** \approx **AE**(3.4)

OG = XA = YB = DE = ct, where 'c' is the velocity of light in the concerned medium

From the geometry of the figure: Considering the arc XOY

 $(2OS - OD).OD = XD^2$

For a mirror of large radius of curvature and small aperture : OD << OS, which gives:

$$2OS.OD = XD^2$$

Or $OD = \frac{XD^2}{2OS} = -\frac{XD^2}{2u}$ (3.5)

Similarly, considering AGB

 $2GS.GE = AE^2$

As AGB has a large radius so compared to it the points G and O are almost overlapping. So GS = OS and, which gives:

 $20Q.GE = AE^2$

Or $GE = \frac{AE^2}{20Q} = -\frac{AE^2}{2v}$ (3.6)

Similarly considering arc AOB

$$20C.OE = AE^2$$

Or
$$OE = \frac{AE^2}{2OC} = -\frac{AE^2}{2r}$$
(3.7)

Now: OD = OE + ED = OE + OG = OE + (OE - GE)

Or OD + GE = 2OE

So from equations (3.5), (3.6) and (3.7)

Or
$$-\frac{\mathrm{XD}^2}{\mathrm{2u}} - \frac{\mathrm{AE}^2}{\mathrm{2v}} = -\frac{\mathrm{2AE}^2}{\mathrm{r}}$$

Applying equation (3.4)

	$-\frac{AE^2}{2u} - \frac{AE^2}{2v} = -\frac{2AE^2}{2r}$	
Or	$-\frac{1}{2u}$ $-\frac{1}{2v} = -\frac{2}{2r}$	
0	$-\frac{1}{u} -\frac{1}{v} = -\frac{2}{r}$	
Or	$\frac{1}{u} + \frac{1}{v} = \frac{2}{r}$	(3.8)

Equation (3.8) gives the equation of reflection for a concave reflecting surface.

a) Reflection at convex spherical surface

Fig. 3.2. Reflection at a concave spherical surface

 $\rm MN \rightarrow Convex\ mirror\ centered\ at\ C$

 $\text{OC} \rightarrow \text{Radius}$ of curvature = r

 $S \rightarrow Source \text{ or object}$

 $O \rightarrow Midpoint of MN$

 $OS \rightarrow Object \ distance = -u$

 $XOY \rightarrow$ Incident spherical wave front with centre S

 $AGB \rightarrow Position$ of the spherical wave front centered at Q for the wave reflected from the mirror after time, 't'

 $OQ \rightarrow Image \ distance = v$

XD, AE \rightarrow Perpendiculars, from X and A respectively, on the principal axis. For a mirror of small aperture and large radius of curvature **XD** \approx **AE**(3.9)

OG = XA = YB = DE = ct, where 'c' is the velocity of light in the concerned medium.

From the geometry of the figure: Considering the arc XOY

 $(2OS - OD).OD = XD^2$

For a mirror of large radius of curvature and small aperture : OD << OS, which gives:

$$2OS.OD = XD^2$$

Or $OD = \frac{XD^2}{2OS} = -\frac{XD^2}{2u}$ (3.10)

Similarly, considering AGB

 $2GS.GE = AE^2$

As AGB has a large radius so compared to it the points G and O are almost overlapping. So GS = OS and, which gives:

$$20Q.GE = AE^2$$

Or $GE = \frac{AE^2}{20Q} = \frac{AE^2}{2v}$ (3.11)

Similarly considering arc AOB

 $20C.OE = AE^2$

Or
$$OE = \frac{AE^2}{2OC} = \frac{AE^2}{2r}$$
(3.12)

Now: OD = ED - OE = OG - OE = (GE - OE) - OE

Or OD - GE = -2OE

So from equations (3.10), (3.11) and (3.12)

	XD^2	AE ²			2AE ²	
_	2u	_	2v	_	_	2r

Applying equation (3.9)

	$-\frac{AE^2}{2u} - \frac{AE^2}{2v} = -\frac{2AE^2}{2r}$	
Or	$-\frac{1}{2u} - \frac{1}{2v} = -\frac{2}{2r}$	
0	$-\frac{1}{u} -\frac{1}{v} = -\frac{2}{r}$	
Or	$\frac{1}{u} + \frac{1}{v} = \frac{2}{r}$	(3.13)

Equation (3.8) gives the equation of reflection for a convex reflecting surface.

Thus it is found that whatever be the nature of the spherical reflecting surface the equation of reflaction is always :

1	+	$\frac{1}{-} =$	2
u	•	v	r