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Stationary States 

The time dependent Schrodinger equation  in 1D: 

𝑖ħ
𝜕

𝜕𝑥
(𝑥, 𝑡) = [

ħ2

2𝑚
∇2 + 𝑉(𝑥, 𝑡)](𝑥, 𝑡) = 𝐻(𝑥, 𝑡) 

H : the Hamiltonian 

V(x) : the potential , assumed to be time independent  

 

Let us calculate the solutions of this equation by using the method of separation of 

variables : ψ(t,x) = ψ(x)f(t)  

𝑖ħ(𝑥)
𝜕𝑓(𝑡)

𝜕𝑡
= −

ħ2

2𝑚

𝜕2(𝑥)

𝜕𝑥2
+ 𝑉(𝑥)(𝑥)𝑓(𝑡) 

Divide by  (𝑥)𝑓(𝑡) 

1

𝑓(𝑡)
 𝑖ħ
𝜕𝑓(𝑡)

𝜕𝑡
= −

1

(𝑥)

ħ2

2𝑚

𝜕2(𝑥)

𝜕𝑥2
+ 𝑉(𝑥) 

left hand side is only t dependent and the right hand side x dependent. So both sides 

must be equal to a constant, E (say). We can thus solve each side independently. The 

left side yields 

1

𝑓(𝑡)
 𝑖ħ
𝜕𝑓(𝑡)

𝜕𝑡
= 𝐸         →          

𝜕𝑓

𝑓
= −

𝑖

ħ
𝐸𝜕𝑡       →      𝑓(𝑡) = 𝑐𝑜𝑛𝑠𝑡. 𝑒−𝑖𝐸𝑡/ħ 

The constant in Eq. (4.4) will later on be absorbed into ψ(x). 

The right side yields 

[−
ħ2

2𝑚

𝜕2

𝜕𝑥2
+ 𝑉(𝑥)](𝑥) = 𝐸(𝑥)     →         𝐻(𝑥) = 𝐸(𝑥) 

This is time independent Schrodinger equation. 

The Solution of time dependent Schrodinger equation is called stationary state, if 

it is represented by the wave function ψ(x,t) = ψ(x)e−iEt/ħ . 

 

 

Why are they so called? 
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because the probability density of the states do not depend on time 

 

|𝛹(𝑥, 𝑡)|2 = 𝛹∗(𝑥, 𝑡)𝛹(𝑥, 𝑡) 

= (𝛷(𝑥)𝑒 − 𝑖𝐸𝑡/ℏ)∗𝛷(𝑥)𝑒 − 𝑖𝐸𝑡/ℏ 

= 𝛷∗(𝑥)𝑒𝑖𝐸𝑡/ℏ)𝛷(𝑥)𝑒 − 𝑖𝐸𝑡/ℏ 

= 𝛷∗(𝑥)𝛷(𝑥) = |𝛷(𝑥)|2 

The dependence on t has gone  Particle can stay there for ever unless disturbed.  

 

The expectation values of observables A(x,p) are time independent  

〈𝐴(𝑥, 𝑝)〉 = ∫𝑑𝑥∗(𝑥)𝑒
𝑖𝐸𝑡

ħ 𝐴 (𝑥,−𝑖ħ
𝜕

𝜕𝑥
)𝑒

−𝑖𝐸𝑡

ħ = ∫𝑑𝑥∗(𝑥)𝐴 (𝑥,−𝑖ħ
𝜕

𝜕𝑥
)   

(time dependence disappears) 

Just take H(x,p) instead of A(x,p)……… 

The eigenvalues of the Hamiltonian, which are the possible energy levels of the 

system, are clearly time independent.  

***Some interesting features about stationary states : 

1. The normalization of the wavefunction will restrict the possible values of the 

constant E, the energy of the system in the Schrodinger equation. 

2. For normalized solutions ψ(x) of the Schrodinger equation the energy E must be 

real. 

3. Solutions ψ(x) of the time-independent Schrodinger equation can always be 

chosen to be real. 

4. The parity operator P acting on a function f(x) changes the sign of its argument: 

Pf(x) = f(−x). 

Try to prove yourselves… 

We conclude that even and odd functions are eigenfunctions of the parity operator 

Pψeven = +ψeven  and Pψodd = −ψodd , which we will use later on. 

Try to prove…… 
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5.The time-independent Schrodinger equation is an eigenvalue equation. The 

stationary states ψi are eigenvectors/eigenfunctions of the Hamiltonian H with 

eigenvalues E. It implies stationary state has a precisely defined energy. Calculating 

the expectation value of the Hamiltonian for a stationary system just gives 

〈𝐸〉 = ∫𝑑𝑥∗(𝑥)𝐻(𝑥) = ∫𝑑𝑥∗(𝑥)𝐸(𝑥) = 𝐸 ∫𝑑𝑥∗(𝑥)(𝑥) = 𝐸    

Consequently, there is no uncertainty in energy ∆E =0 

6.The eigenvalues of hermitian operators are real and the eigenvectors 

corresponding to different eigenvalues are orthogonal. H is Hermitian and its 

eigenvectors corresponding to different eigenvalues are orthogonal. 

7. For a symmetric potential V(x) =V(-x), a basis of states i can be chosen such that 

there is a family of even and odd solutions, which we will call ψ(+)(x) and ψ(−)(x) 

Try to prove…… 

 

 EXPANSION INTO STATIONARY STATES  

According to spectral theorem we can then expand a given state into a complete 

orthonormal system of energy eigenstates n  

(𝑥) =∑𝑐𝑛 𝑛(𝑥)

𝑛

 

Where      ∫∗𝑖𝑑𝑥 = ∫∑𝑐𝑛
∗ 
𝑛
∗
𝑖
𝑑𝑥 = ∫∑𝑐𝑛

∗𝛿𝑛𝑖𝑑𝑥 = 𝑐𝑖
∗ = 𝑐𝑖 

 

We can now extend the expansion from the time independent case to the time 

dependent one. We just remember the time dependent Schrodinger equation 

𝑖ħ
𝜕

𝜕𝑥
(𝑥, 𝑡) = 𝐻(𝑥, 𝑡) 

 

with a particular solution  
𝑛
(𝑥, 𝑡) = 

𝑛
(𝑥)𝑒−𝑖𝐸𝑡/ħ 

The general solution is then a superposition of particular solutions  

𝑛(𝑥, 𝑡) =∑
𝑛
(𝑥)𝑒−𝑖𝐸𝑡/ħ

𝑛
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The expansion coefficients can easily be computed by setting t = 0 and taking the 

scalar product with ψm(x) 

∫
𝑚
∗(𝑥)(𝑥, 0)𝑑𝑥 =  ∫𝑑𝑥

𝑚
∗(𝑥)∑𝑐𝑛

𝑛

 
𝑛
(𝑥)𝑒−𝑖𝐸.

0
ħ 

=∑𝑐𝑛
𝑛

∫𝑑𝑥
𝑚
∗(𝑥) 

𝑛
(𝑥). 1 =∑𝑐𝑛

𝑛

𝛿𝑚𝑛 = 𝑐𝑚 

Physical interpretation of the expansion coefficients: 

• If a system is in an eigenstate n of this observable A the expectation value 

in this state is equal to the corresponding eigenvalue an  𝐴𝑛 = 𝑎𝑛𝑛 

• The uncertainty of the observable vanishes for this state ∆A = 0. 

• The measurement leaves the state unchanged, the system remains in the 

eigenstate 𝑛.  

 

• If the system is in a general state ψi, which is a superposition of eigenstates 


𝑛

,( 
𝑛
 is eigenstates of A), the expectation value is given by the sum of all 

eigenvalues, weighted with the modulus squared of the expansion coefficients  

〈𝐴〉 = ∫∗𝐴𝑑𝑥

=∑∑∫𝑑𝑥𝑐𝑛
∗
𝑛
∗ 𝐴 𝑐𝑚𝑚

𝑚𝑛

=∑∑𝑐𝑛
∗𝑐𝑚∫𝑑𝑥𝑛

∗ 𝑎𝑚 𝑚 =

𝑚𝑛

∑∑𝑐𝑛
∗𝑐𝑚𝑎𝑚∫𝑑𝑥𝑛

∗  
𝑚

𝑚𝑛

=∑∑𝑐𝑛
∗𝑐𝑚𝑎𝑚𝛿𝑛𝑚

𝑚𝑛

=∑𝑐𝑛
2𝑎𝑛

𝑛

 

• The expansion coefficients cn can thus be regarded as a probability amplitude 

for the transition from a state ψ to an eigenstate 
𝑚

 when the corresponding 

observable is measured. The actual transition probability is given by its 

modulus squared |cn|
2, the probability for measuring the result an  

• ∑ |𝑐𝑛|
2

𝑛 = 1  

• measurement of an observable in a general state changes the state to one of 

the eigenstates of the observable. This process is often called the reduction or 

collapse of the wave function  
𝐴
→ 

𝑛
. 
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now we will calculate the energy eigenvalues and eigenfunctions for several 

Hamiltonians, i.e. for several potentials. 

 

 

A. Infinite Potential Well 

 

 

𝑉(𝑥) = {
0, 0 ≤ 𝑥 ≤ 𝐿
 ∞, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

     

       

    

The quantum object is limited to a certain region between x = 0 and x = L where it 

moves freely but cannot leave.  

The potential is infinite outside the interval [ 0 , L ] and vanishes inside. Therefore 

the only physically allowed region for a particle is inside the interval. 

Furthermore, for the wave function to be continuous we have to require that it 

vanishes at the boundaries x = 0 and x = L 

 = 0 𝑎𝑡 𝑥 = 0 𝑎𝑛𝑑 𝑥 = 𝐿 

The particles behave like free particles inside the well. Therefore we need to solve 

the time-independent Schrodinger equation with above mentioned boundary 

conditions . 

           −
ħ2

2𝑚

∂2

∂x2
(𝑥) = 𝐸(𝑥)               Where  𝑘2 =

2𝑚𝐸

ħ2
 

i.e        
∂2

∂x2
(𝑥) + 𝑘2(𝑥) = 0,  whose general solution is 

         

(x) = Asin(kx) + Bcos(Kx) 
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Here A and B are some constants that are yet to be determined by the boundary 

conditions, starting with  (0) = 0 

  0=A sin(0)+Bcos(0)   B=0    Therefore, (x) = Asin(kx) 
 

Using the second boundary condition (x = L) = 0, we get 

    0 = A sin (kL)   kL=n     kn=n/L 

Therefore, 
𝑛
(x) = A𝑛sin(k𝑛x)  

𝑛
(x) = A𝑛sin(nx/L) 

where n = 1, 2, 3,….. can be any natural number. 

   𝐸𝑛 =
𝑘2ħ2

2𝑚
=
𝑛22ħ2

2𝑚𝐿2
   i.e energy is quantized 

Normalization constant of wave function 

∫ 𝑑𝑥||2 = 1              |𝑎|2∫ 𝑑𝑥 𝑠𝑖𝑛2(𝑛𝑥/𝐿) = 1      
𝐿

0

     
𝐿

0

|𝑎|2 =
2

𝐿
 

Thus the bound states of the infinite potential well are then given by 


𝑛
(x) = √

2

𝐿
sin(nx/L)  

n Energy values Wave functions 

1# ground state E 
√2 𝐿⁄ sin(x/L) 

2 # 1st excited state 4E 
√2 𝐿⁄ sin(2x/L) 

3 # 2nd excited state 9E 
√2 𝐿⁄ sin(3x/L) 

4 # 3rd excited state 16E 
√2 𝐿⁄ sin(4x/L) 
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We note a few features: 

1. The ground state n = 1 has no nodes. A node is a zero of the wave function in    

0 < 𝑥 < 𝐿. The zeroes at x = 0 and x = a do not count as nodes. Clearly ψ1(x) has 

no nodes.  

It is in fact true that any normalizable ground state of a one-dimensional potential 

does not have nodes. 

2. The first excited state, n = 2 has one node. It is at x = L/2, the midpoint of the 

interval. The second excited state, n = 3 has two nodes. The pattern in fact continues. 

The n-th excited state will have n nodes. 

3. In the figure the dotted vertical line marks the interval midpoint x = L/2. We note 

that the ground state is symmetric under reflection about x = L/2. The first excited 

state is antisymmetric, indeed its node is at x = L/2. The second excited state is again 

symmetric. Symmetry and antisymmetry alternate forever. 

4. The symmetry just noted is not accidental. It holds, in general for potentials V (x) 

that are even functions of x: V (-x) = V (x). Our potential, does not satisfy this 

equation, but this could have been changed easily. We could shift the origin s.t well 

extends  from –L/2 to +L/2 , then it would be  symmetric about the origin x = 0 . It 
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is in fact true that the bound states of a one-dimensional even potential are either 

even or odd!  

5. The wavefunctions ψn(x) with n = 1,2,... form a complete set that can be used to 

expand any function in the interval [0,L] that vanishes at the endpoints. If the 

function does not vanish at the endpoints, the convergence of the expansion is 

delicate, and physically such wavefunction would be problematic as one can verify 

that the expectation value of the energy is infinite. 

 

 

 

B. Finite Potential Well 

Its a similar problem only with the change that the potential walls are no longer 

infinitely high.  

Classically, a particle is trapped within the box, if its energy is lower than the 

height of the walls, then it has zero probability of being found outside the 

box. We will see here that, quantum mechanically, the situation is different. 

As before we will start with the time-independent Schrodinger equation  and insert 

the following potential V (x) into our Hamiltonian 

 

𝑉(𝑥) = {
− 𝑉0, −𝐿 ≤ 𝑥 ≤ 𝐿      |𝑥| ≤ 𝐿

    0, 𝑜𝑢𝑡𝑠𝑖𝑑𝑒        |𝑥| > 𝐿
 

 

Suppose energy of the particle be negetive  i.e -E > − 𝑉0    𝐸 < 𝑉0 

we consider separately the two energy regions,  

1. − 𝐸  greater than − 𝑉0       the bound states  

2.  E > 0      the scattered states.  

Lets split the whole x-range into the three regions I, II, and III, and solve the 

equations separately. 

 

Region :1  𝑥 < −𝐿 
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Region :II  −𝐿 ≤ 𝑥 ≤ 𝐿      |𝑥| ≤ 𝐿 

Region :III   𝑥 > 𝐿 

 

 

Lets solve for Bound states 

Region :1 𝒙 < −𝑳  , V = 0 

Time independent SE: 

 −
ħ2

2𝑚

𝜕2

𝜕𝑥2
(𝑥) = −𝐸(𝑥) ,  Where  𝑘2 = −

2𝑚𝐸

ħ2
 

Or,        
∂2

∂x2
(𝑥) − 𝑘2(𝑥) = 0,  whose general solution is 

         

(x) = A𝑒𝑘𝑥 + B𝑒−𝑘𝑥 

     

Here A and B are some constants that are yet to be determined by the boundary 

conditions. 

 Since we are in the region where x < -L  the exponent of the second term would 

diverge with ever decrease for x  . In order to keep the wave function normalizable 

we must demand that the constant B be identically zero, and we get as solution 

for region I 

(x) = A𝑒𝑘𝑥 

 

Region :II −𝑳 ≤ 𝒙 ≤ 𝑳     𝑽(𝒙) = −𝑽𝟎 

Time independent SE: 
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 −
ħ2

2𝑚

𝜕2

𝜕𝑥2
(𝑥) − 𝑉0(𝑥) = −𝐸(𝑥) , 

Or,    
ħ2

2𝑚

𝜕2

𝜕𝑥2
(𝑥) + 𝑉0(𝑥) = 𝐸(𝑥)  

Or,      
ħ2

2𝑚

𝜕2

𝜕𝑥2
(𝑥) + (𝑉0 − 𝐸)(𝑥) = 0  

Here     
2𝑚(𝑉0−𝐸)

ħ2
 > 0 , since 𝐸 <  𝑉0  so call  

2𝑚(𝑉0−𝐸)

ħ2
= 𝑞2 

Or,        
∂2

∂x2
(𝑥) + 𝑞2(𝑥) = 0,  whose general solution is 

 

(x) = C sin(𝑞𝑥)  + D cos(𝑞𝑥) 

 

Region :1 𝒙 > 𝑳   V = 0 

Same as Region :1   

(x) = G𝑒𝑘𝑥 + F𝑒−𝑘𝑥 

     

Here A and B are some constants that are yet to be determined by the boundary 

conditions. 

 Since we are in the region where x > L  the exponent of the first term would 

diverge with ever increase for x  . In order to keep the wave function normalizable 

we must demand that the constant G be identically zero, and we get as solution 

for region I 

(x) = F𝑒−𝑘𝑥 

 

Therefore for bound state, E<0  and -V0 < -E < 0 

(x) = {

A𝑒𝑘𝑥 ,                    𝑓𝑜𝑟 𝒙 < −𝑳,   𝑹𝒆𝒈𝒊𝒐𝒏: 𝑰

C sin(𝑞𝑥)  + D cos(𝑞𝑥), 𝑓𝑜𝑟 − 𝑳 ≤ 𝒙 ≤ 𝑳  , 𝑹𝒆𝒈𝒊𝒐𝒏: 𝑰𝑰

     F𝑒−𝑘𝑥 ,                  𝑓𝑜𝑟   𝒙 > 𝑳   , 𝑅𝒆𝒈𝒊𝒐𝒏: 𝑰𝑰𝑰 

  

 

Remark: The motion of a classical particle with energy E < 0 is strictly 

confinned to region II. A quantum mechanical particle, however, can 
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penetrate into the classically forbidden regions I and III, i.e. the probability 

density is non-vanishing, |(𝑥)|2 ≠ 0.How far the particle can penetrate 

depends on the respective energy, it can reach a depth of about 

∆𝑥  
1

𝑘
=

ħ

√2𝑚𝐸
→ 0 𝑎𝑠 𝐸 → 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 

 

Thus, penetration vanishes for large energies in deep potentials. Accordingly, 

there exists a momentum uncertainty which a classical particle would need to 

overcome the potential barrier 

∆𝑝       
ħ

∆𝑥
= √2𝑚𝐸 

Lets remember a we pointed earlier  for a symmetric potential V(x) =V(-x), a basis 

of states i can be chosen such that there is a family of even and odd solutions, 

which we will call ψ(+)(x) and ψ(−)(x) 

Here V(x) is symmetrical, we should have a set of even solution, ψ(+)(x) and a set 

of odd solution, ψ(−)(x) 


+
(x) = {

A𝑒𝑘𝑥, 𝑹𝒆𝒈𝒊𝒐𝒏: 𝑰

D cos(𝑞𝑥),𝑹𝒆𝒈𝒊𝒐𝒏: 𝑰𝑰

     A𝑒−𝑘𝑥 , 𝑅𝒆𝒈𝒊𝒐𝒏: 𝑰𝑰𝑰 

 

 


−
(x) = {

−A𝑒𝑘𝑥, 𝑹𝒆𝒈𝒊𝒐𝒏: 𝑰

C sin(𝑞𝑥), 𝑹𝒆𝒈𝒊𝒐𝒏: 𝑰𝑰

     A𝑒−𝑘𝑥 , 𝑅𝒆𝒈𝒊𝒐𝒏: 𝑰𝑰𝑰 

 

 

At the boundaries of the potential well the functions that are solutions in their 

respective areas need to merge smoothly into each other. Mathematically this 

means, that the total wave function needs to be smooth, i.e. the values as well as 

the first derivatives of the respective partly solutions must match at ±L. 
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We can summarize these two requirements into the statement, that the 

logarithmic derivative of the wave function must be continuous 

Logarithmic derivative:    
𝑑

𝑑𝑥
 𝑙𝑛(𝑥) =

′(𝑥)

(𝑥)
  𝑚𝑢𝑠𝑡 𝑏𝑒 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 

It does not matter here whether one chooses the boundary between regions I and 

II or II and III, the result is the same. 

For  even solution, 
+
(𝑥),   

+
′(𝑥)

+(𝑥)
|
𝑥→𝐿

=
−𝐷𝑞𝑠𝑖𝑛(𝑞𝐿)

𝐷𝑐𝑜𝑠(𝑞𝐿)
=
−𝐴𝑘𝑒−𝑘𝐿

𝐴𝑒−𝑘𝐿
  

             𝒒𝒕𝒂𝒏(𝒒𝑳) = 𝒌 

We know q and k depend on energy. 𝒒𝒕𝒂𝒏(𝒒𝑳) = 𝒌  is quantisation formula for 

energy i.e  it gives permitted energies only. 
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For  odd solution, 
−
(𝑥), the quantisation formula for energy : 𝒒𝒄𝒐𝒕(𝒒𝑳) = −𝒌 

Graphical solution: 𝒒𝒕𝒂𝒏(𝒒𝑳) = 𝒌  and 𝒒𝒄𝒐𝒕(𝒒𝑳) = −𝒌  are called transcendental 

equations, which means that they can only be written in implicit form. Solutions to 

these equations can be found numerically or graphically, but not analytically. 

However before we do so, we will introduce new (dimensionless) variables z and z0 

to simplify the calculation 

𝒛 = 𝒒𝑳   and    𝒛𝟎 =
𝑳

ħ
√𝟐𝒎𝑽𝟎 

𝑘2 + 𝑞2 =
2𝑚𝐸

ħ𝟐
+
2𝑚(𝑉0 − 𝐸)

ħ2
=
2𝑚𝑉0
ħ𝟐

 

Now,  (𝑘2 + 𝑞2)𝐿2 =
2𝑚𝑉0

ħ𝟐
𝐿2 = 𝑧0

2 

    (𝑘2𝐿2 + 𝑞2𝐿2) = 𝑧0
2        

𝑘2𝐿2

𝑞2𝐿2
+ 1 =

𝑧0
2

𝑞2𝐿2
=
𝑧0
2

𝑧2
         

𝑘2𝐿2

𝑞2𝐿2
=
𝑧0
2

𝑧2
− 1 

 
k

𝑞
= √

𝑧0
2

𝑧2
− 1 

Therefore, quantisation formulae for energy : 

  𝒕𝒂𝒏𝒛 = √
𝑧0
2

𝑧2
− 1,      𝑓𝑜𝑟 even solution,

+
(𝑥) 

 𝒄𝒐𝒕𝒛 = −√
𝑧0
2

𝑧2
− 1,       𝑓𝑜𝑟 odd solution,

− 
(𝑥) 

We can now study this graphically by plotting both the left hand and the right hand 

function for given values of z0, e.g. for L, m and V0 . Below I am plotting two 

equations: 

 𝑦 = 𝒕𝒂𝒏𝒛          𝒂𝒏𝒅         𝒚 = √
𝒛𝟎
𝟐

𝒛𝟐
− 𝟏,    for     𝑧0 = 8    

L

ħ
√2mV0 
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The intersections lead to the allowed values of  

For the chosen parameter we have three solutions z1 = 0.8/2 , z2 = 2.6 /22  and 

z3 = 4.25/2.  

𝒛𝒏 = 𝒒𝒏𝑳 = √
2𝑚(𝑉0 − 𝐸𝑛)

ħ2
 𝐿 =

𝐿

ħ
√2𝑚(𝑉0 − 𝐸𝑛) 

This gives allowed values of En. 

For increasing parameters L and V0 the value of z0 increases and we obtain more 

bound states.  

You please repeat the same procedure for the odd states by replacing tan z 

with -cot z and find the energies of the odd solutions at Home. 

 

Special cases: Let us now study some limits of the graphical solutions, where we 

can find analytical approximations to our problem. 

 

Case I: Broad & deep potential well:  

For big values for L and V0 the quantity z0 becomes high and the intersections with 

the tan-curves are closer to (2n+1)/2, where n=0,1,2……. 

𝒛𝒏 = (𝟐𝒏 + 𝟏)𝝅/𝟐 

𝒛𝒏
𝟐 =

2𝑚(𝑉0 − 𝐸𝑛)

ħ2
 𝐿2 = (𝟐𝒏 + 𝟏)𝟐𝝅𝟐/𝟒 

 

−𝐸𝑛 ≈ −𝑉0 +
(𝟐𝒏 + 𝟏)𝟐𝝅𝟐ħ2

𝟖𝑚𝐿2
 

 

Case I: Narrow & small potential well:  

Here L and V0  values are small, z0  less, much less than /2 
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However small the parameter z0, an intersection of the functions always remains, 

but intersecting points are less. Here we are getting only one intersecting point     

there is only one bound state i.e even bound state.  

There may not be odd bound state. 

At least one even bound state we must get….. 

Summary 

𝒕𝒂𝒏𝒛 = √
𝑧0
2

𝑧2
− 1 is for even solution, 

+
(𝑥), exist for z= 0 to /2,  to 3/2, 2 

to 5/2 and so on 

−𝒄𝒐𝒕𝒛 = √
𝑧0
2

𝑧2
− 1   is for odd solution, 

−
(𝑥), exist for z= /2 to , 3/2 to 2, 

5/2 to 3 and so on.= 

Ground state is even function, Ist excited state is an odd function, 2nd excited state 

is again even function…. 

Let us now return again to the even and odd wavefunctions, where we still have 

to determine the constants A, C and D. We first use the continuity 𝑜𝑓 
+
𝑎𝑛𝑑 

−
 

at x = L   


+
(x)|

𝑥=𝐿
= 

+
(x)|

𝑥=𝐿
,   which gives     D cos(𝑞𝑛𝐿) = A𝑒

−𝑘𝑛𝐿   
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Therefore,   𝐷 = 𝐴
𝑒−𝑘𝑛𝐿

cos(𝑞𝑛𝐿)
 

And 


−
(x)|

𝑥=𝐿
= 

−
(x)|

𝑥=𝐿
,   which gives     C sin(𝑞𝑛𝐿) = A𝑒

−𝑘𝑛𝐿   

Therefore,   𝐶 = 𝐴
𝑒−𝑘𝑛𝐿

sin(𝑞𝑛𝐿)
 

A can be obtained from normalization,  

𝐴𝑛 =
cos (𝑞𝑛𝐿)

√1 + 𝑘𝑛𝐿
𝑒𝑘𝑛𝐿   𝐶𝑛 = 𝐷𝑛 =

1

√1 + 𝑘𝑛𝐿
  

 

Physical interpretation of the finite potential well: An application for the finite 

potential well is the model for free electrons in metal, used in solid state physics. 

There the atoms of the metal crystal share the electrons which are free to move 

inside the metal, but face a potential barrier, which keeps them inside. Thus in a first 

approximation, the finite (square) potential well is a good model for the situation. 

To release one electron from the metal, the energy W must be invested. This is the 

work function, which we can calculate3 with the formula W = V0 − En , 

Keep in mind, that we rescaled the energy here in contrast to our previous 

calculations, the potential V0 as well as the energies of the bound states are positive 

here. 
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Though we solved a 1D problem, the square well represents a 3D problem as 

well. Consider for example a spherical well in 3D: The potential is zero inside a 

region of radius a and is V0 for r > a. Then we can rewrite the time independent 

Schrodinger equation in 3D for this potential in spherical coordinates and use 

separation of variables ({r, ϑ, ϕ}). Because of symmetry, the wavefunction is a 

constant in ϑ and ϕ, thus we will have to solve just a single differential equation 

for the radial variable, very similar to what found here. We must then choose 

the odd-parity solution in order to obtain a finite wavefunction at r = 0. Thus 

in 3D, only the odd solutions are possible and we need a minimum potential well 

depth in order to find a bound state which is the equivalent of the first excited 

state of 1D. 

 

 

 

 

 

 

 

 

 

B. Suppose the energy of the particle be E > 0 i.e lets investigate Scattered 

States 

As before we will split our problem for the regions I, II and III  

Region :1  𝑥 < −𝐿 

Region :II  −𝐿 ≤ 𝑥 ≤ 𝐿      |𝑥| ≤ 𝐿 

Region :III   𝑥 > 𝐿 

We will assume that an initial plane wave travels from x = − to our potential and 

study the possible states that are not bound but scattered, i.e. transmitted or reflected 

by the potential 
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Region :1 𝒙 < −𝑳   V = 0 

Time independent SE: 

 −
ħ2

2𝑚

𝜕2

𝜕𝑥2
(𝑥) = +𝐸(𝑥) ,  Where  𝑘2 =

2𝑚𝐸

ħ2
 

Or,        
∂2

∂x2
(𝑥) + 𝑘2(𝑥) = 0,  whose general solution is 

         

(x) = A𝑒𝑖𝑘𝑥⏟  
𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔

+ B𝑒−𝑖𝑘𝑥⏟  
𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑

 

     

Here A and B are some constants that are yet to be determined by the boundary 

conditions. 

Region :II −𝑳 ≤ 𝒙 ≤ 𝑳     𝑽(𝒙) = −𝑽𝟎 

Time independent SE: 

 −
ħ2

2𝑚

𝜕2

𝜕𝑥2
(𝑥) − 𝑉0(𝑥) = 𝐸(𝑥) , 

Or,    
ħ2

2𝑚

𝜕2

𝜕𝑥2
(𝑥) + 𝑉0(𝑥) = −𝐸(𝑥)  

Or,      
ħ2

2𝑚

𝜕2

𝜕𝑥2
(𝑥) + (𝑉0 + 𝐸)(𝑥) = 0  

Here     
2𝑚(𝑉0+𝐸)

ħ2
 > 0 ,  so call  

2𝑚(𝑉0+𝐸)

ħ2
= 𝑞2 

Or,        
∂2

∂x2
(𝑥) + 𝑞2(𝑥) = 0,  whose general solution is 
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(x) = C sin(𝑞𝑥)  + D cos(𝑞𝑥) 

 

Region :1 𝒙 > 𝑳   V = 0 

Same as Region :1   

(x) = G𝑒𝑖𝑘𝑥 + F𝑒−𝑖𝑘𝑥 

     

Here A and B are some constants that are yet to be determined by the boundary 

conditions. Since no wave is coming from infinity i.e from right to left F=0 

(x) = G𝑒𝑖𝑘𝑥 

Lets summerize,           (x) = {
A𝑒𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥              ∶ 𝐼
C sin(𝑞𝑥)  + D cos(𝑞𝑥) ∶ 𝐼𝐼

G𝑒𝑖𝑘𝑥                                ∶ 𝐼𝐼𝐼

 

 

We apply the boundary conditions, i.e. the continuity of the wave function and its 

first derivative at the edges of the potential wall 

At  x= -L:  A𝑒−𝑖𝑘𝐿 + 𝐵𝑒𝑖𝑘𝐿 = −C sin(𝑞𝐿)  + D cos(qL) 

               and 𝑖𝑘(A𝑒−𝑖𝑘𝐿 − 𝐵𝑒+𝑖𝑘𝐿) = 𝑞(𝐶 cos(𝑞𝐿) + 𝐷𝑠𝑖𝑛(𝑞𝐿)) 

 

At  x= L:  C sin(𝑞𝐿)  + D cos(qL) = 𝐺𝑒𝑖𝑘𝐿 

               and 𝑞(𝐶 cos(𝑞𝐿) − 𝐷𝑠𝑖𝑛(𝑞𝐿)) = 𝑖𝑘𝑒+𝑖𝑘𝐿 

Together with the normalization condition we thus have 5 equations for our 5 

variables A, B, C, D and F. 

𝐷 = (𝑐𝑜𝑠(𝑞𝐿) − 𝑖
𝑘

𝑞
𝑠𝑖𝑛(𝑞𝐿))𝐺𝑒𝑖𝑘𝐿 

𝐶 = (𝑠𝑖𝑛(𝑞𝐿) + 𝑖
𝑘

𝑞
𝑐𝑜𝑠(𝑞𝐿))𝐺𝑒𝑖𝑘𝐿 

2𝐵 = 𝑖 (
𝑞

𝑘
−
𝑘

𝑞
) sin(2𝑞𝐿)  𝐺 
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𝐵

𝐺
= 𝑖 (

𝑞2−𝑘2

2𝑞𝑘
) 𝑠𝑖𝑛(2𝑞𝐿)             

𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒

Transmission Amplitude
    

 

To get the probability for the reection or transmission we have to normalize each 

part by the amplitude of the incoming wave and to take the modulus squared of each 

expression. We also want to express the quantities q and k by the more familiar 

constants m, ħ and V0 

.𝑞2 − 𝑘2 =
4𝑚2𝑉0

2

ħ4
 ,      (2𝑞𝑘)2 = 4

4𝑚2

ħ4
𝐸(𝐸 + 𝑉0) 

Thus we find for the reflection coefficient R(E) describing the probability of 

reflection 

𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓. , 𝑅 =
|𝐵|2

|𝐴|2
=

𝑉0
2

4𝐸(𝐸 + 𝑉0)
 𝑠𝑖𝑛2(2𝑞𝐿)

|𝐺|2

|𝐴|2
 

Transmission amplitude:       
𝐺

𝐴
= 𝑒−2𝑖𝑘𝐿 [cos(2𝑞𝐿) − 𝑖

𝑞2+𝑘2

2𝑞𝑘
sin (2𝑞𝐿)]

−1

 

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓. , 𝑇 =  
|𝐺|2

|𝐴|2
= [1 +

𝑉0
2

4𝐸(𝐸 + 𝑉0)
sin2(2𝑞𝐿)]

−1

 

𝑅 + 𝑇 

 

 

 

 

 

 

 

Transmission coefficient is plotted as a function of the energy showing the 

positions ER of the resonances. 

𝑇 = 1      𝑓𝑜𝑟 sin(2𝑞𝐿) = 0    
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i.e    𝑓𝑜𝑟      2𝑞𝐿 = 𝑛𝜋            
2𝐿

ħ
  √2𝑚(𝐸 + 𝑉0) = 𝑛𝜋    𝐄𝒏 =

𝒏𝟐𝝅𝟐ħ𝟐

𝟖𝒎𝑳𝟐
− 𝑽𝟎 

Maximum allowed transmission energy is  𝐄𝑹 =
𝒏𝟐𝝅𝟐ħ𝟐

𝟖𝒎𝑳𝟐
− 𝑽𝟎 

Transmission is minimum for  

 sin(2𝑞𝐿) = ±1   2qL = (2𝑛 + 1)
𝜋

2
   

2𝐿

ħ
  √2𝑚(𝐸 + 𝑉0) = (2𝑛 + 1)

𝜋

2
 

Minimum allowed transmission energy is  𝐄𝒎𝒊𝒏 =
(𝟐𝒏+𝟏)𝟐𝝅𝟐ħ𝟐

𝟑𝟐𝒎𝑳𝟐
− 𝑽𝟎 

It can be shown that Transmission coefficient falls off from max value like resonance 

curve. 

 

 

 

 

 

 

 

This is the well-known Breit–Wigner distribution, also known as Lorentz- or Cauchy 

distribution, which describes resonance phenomena. The quantity Γ represent the 

width at half maximum of the distribution 

 

Ramsauer-Townsend experiment 

The resonance of transmission can be nicely seen in the scattering of slow 

electrons in a noble gas (e.g. Ne, Ar, Xe) which has been studied independently 

by C. Ramsauer and J.S. Townsend in the 1920’s. The probability for the electrons 

to collide with the gas particles, which classically should decrease monotonically 

for increasing energy, is observed to reach local minima for certain energies. This 

experiment is in total agreement with the quantum mechanical prediction of 

transmission of energy through potential well. 

 



 
 
SEM:4 / QUANTUN MECHANICS / LECTURE#7/ 19.4.20   ARUNIMA CHANDA 
 

22 
 

Tunnel Effect 

The so-called tunnel effect of quantum mechanics can be derived from a special 

case of the potential well, by changing -V0 into +V0, thus creating a potential 

barrier. 

𝑉(𝑥) = {
+𝑉0, −𝐿 ≤ 𝑥 ≤ 𝐿      |𝑥| ≤ 𝐿

    0, 𝑜𝑢𝑡𝑠𝑖𝑑𝑒     |𝑥| > 𝐿
 

 

 

 

 

 

 

 

 

 

For a given potential barrier with height V0 the solutions of the Schrodinger equation 

with energy E < V0 still have a nonvanishing probability density in region III, which 

allows them to "tunnel" through the barrier although this would classically be 

forbidden. 

Classically, a particle with less energy than the potential barrier could only be 

reflected. But in quantum mechanics, due to continuity the wave function 

decreases exponentially in the forbidden region II, resulting in a nonvanishing 

probability density in region III. It allows the particle to pass the barrier as if it 

was through a tunnel, this linguistic illustration gives rise to the name tunnel 

effect. 

Region :1 𝒙 < −𝑳   V = 0 

Time independent SE: 

 −
ħ2

2𝑚

𝜕2

𝜕𝑥2
(𝑥) = +𝐸(𝑥) ,  Where  𝑘2 =

2𝑚𝐸

ħ2
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Or,        
∂2

∂x2
(𝑥) + 𝑘2(𝑥) = 0,  whose general solution is 

         

(x) = A𝑒𝑖𝑘𝑥 + B𝑒−𝑖𝑘𝑥 

     

Here A and B are some constants that are yet to be determined by the boundary 

conditions. 

Region :II −𝑳 ≤ 𝒙 ≤ 𝑳     𝑽(𝒙) = 𝑽𝟎 

Time independent SE: 

 −
ħ2

2𝑚

𝜕2

𝜕𝑥2
(𝑥) + 𝑉0(𝑥) = 𝐸(𝑥) , 

Or,    
ħ2

2𝑚

𝜕2

𝜕𝑥2
(𝑥) − 𝑉0(𝑥) = −𝐸(𝑥)  

Or,      
ħ2

2𝑚

𝜕2

𝜕𝑥2
(𝑥) − (𝑉0 − 𝐸)(𝑥) = 0  

Here     
2𝑚(𝑉0−𝐸)

ħ2
 > 0 ,  so call  

2𝑚(𝑉0−𝐸)

ħ2
= 𝑞2 

Or,        
∂2

∂x2
(𝑥) − 𝑞2(𝑥) = 0,  whose general solution is 

 

(x) = C sinh(𝑞𝑥)  + D cosh(𝑞𝑥) 

 

Region :1 𝒙 > 𝑳   V = 0 

Same as Region :1   

(x) = G𝑒𝑖𝑘𝑥 + F𝑒−𝑖𝑘𝑥 

     

Here A, B, C and D are some constants that are yet to be determined by the 

boundary conditions. Since no wave is coming from infinity i.e from right to left 

F=0 

(x) = G𝑒𝑖𝑘𝑥 

Lets summerize, 
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(x) = {
A𝑒𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥              ∶ 𝐼
C e−qx  + D eqx               ∶ 𝐼𝐼
G𝑒𝑖𝑘𝑥                                ∶ 𝐼𝐼𝐼

 

Where  𝑘 =
√2𝑚𝐸

ħ
        and     

√2𝑚(𝑉0−𝐸)

ħ
= 𝑞 

 

Applying continuity conditions of (x) and its first derivative at boundaries, +L and 

-L 

For the transmission amplitude we get the result 

𝐹

𝐴
= 𝑒−2𝑖𝑘𝐿 [cosh(2𝑞𝐿) − 𝑖

𝑞2 − 𝑘2

2𝑞𝑘
sinh(2𝑞𝐿)]

−1

 

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓. , 𝑇 =  
|𝐹|2

|𝐴|2
= [1 +

(𝑘2 + 𝑞2)

4𝑘2𝑞2
sinh2(2𝑞𝐿)]

−1

= [1 +
𝑉0
2

4𝐸(𝑉0 − 𝐸)
sinh2(2𝑞𝐿)]

−1

 

≈
16𝐸((𝑉0−𝐸)

𝑉0
2 𝑒−

4𝐿

ħ
√2𝑚(𝑉0−𝐸),    if qL>>>1 

 

We now have a good approximation for the transmission probability of a single 

potential step, constant in certain interval and vanishing outside. This potential is 

of course a very crude approximation of real life potentials, which usually are more 

complicated functions of x. To meet these concerns we can generalize the 

transmission coefficient to the so called Gamow factor by "chopping" a given 

potential in infinitesimal potential steps with constant values and integrating over 

a reasonable range [x1, x2] . 
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𝑇 ≈ 𝑒−
2
ħ ∫

𝑑𝑥√2𝑚(𝑉(𝑥)−𝐸)
𝑥2

𝑥1  

 

Physical Examples of Tunneling 

 

Tunneling between conductors: Imagine two conducting materials, separated by 

a thin insulating material, The tunnel effect then allows the electrons to tunnel 

through that barrier, creating a current. This effect is also observed for 

superconducting materials, where it is named Josephson effect. 

 

Cold emission 

 If we consider the electrons in a metal at 0K temperature, we know that a certain 

amount of energy (work function) is necessary to bring the electron out of the metal. 

In this condition the electrons are not escaping and they are trapped by an 

approximate square barrier. Electrons can be removed by heating the metal, or 

transferring energy through photons (photoelectric effect) or applying an external 

electric field. In this case the potential seen by the electrons is not perfect 

rectangular barrier but slightly different. This includes, e, the charge of the 

electron, E, the intensity of the electric field, imperfection of the metal. And when 

an electron leaves the surface an image positive charge is created and this attracts 

the escaping electron. That effect is also included in the barrier potential. 

We  use  

𝑇 ≈ 𝑒−
2
ħ ∫

𝑑𝑥√2𝑚(𝑉(𝑥)−𝐸)
𝑥2

𝑥1  

substitute the new potential in the formula and calculate the new transition 

coefficient:                                         𝑇 ≈ exp (−
8𝜋2√2𝑚𝑉

ħ2
(
𝑉

𝑒𝐸
) 

This is called Fowler-Norheim formula and describes the emission only 

qualitatively. 
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Alpha decay 

It is the disintegration of a parent nucleus to a daughter through the emission of the 

nucleus of a helium atom. 

 

Alpha decay is a quantum tunneling process. In order to be emitted, the alpha 

particle must penetrate a potential barrier. The height of the Coulomb barrier for 

nuclei of A « 200 is about 20-25 MeV. By 1928, George Gamow (and 

independently by Ronald Gurney and Edward Condon) had solved the theory 

of alpha decay via quantum tunneling. They assumed that the alpha particle and 

the daughter nucleus exist within the parent nucleus prior to its dissociation,. The 

alpha particle is trapped in a potential well by the parent nucleus. Classically, it is 

forbidden to escape, but according to the quantum mechanics, it has a tiny (but non-

zero) probability of “tunneling” through the barrier and appearing on the other side 

to escape the nucleus. Using the tunneling mechanism, Gamow, Condon and Gurney 

calculated the penetrability of the tunneling α particle through the Coulomb barrier,  

using the following formula and found the lifetimes of some α emitting nuclei. 

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓. , 𝑇 =
16𝐸((𝑉0 − 𝐸)

𝑉0
2 𝑒

−4𝐿
ħ √

2𝑚(𝑉0−𝐸),  

𝑤ℎ𝑒𝑟𝑒 2𝑞𝐿 =
√2𝑚(𝑉0 − 𝐸)

ħ
 

 

 The main success of this model was the reproduction of the semi-empirical Geiger-

Nuttall law that expresses the lifetimes of the α emitters in terms of the energies of 

the released α particles 

https://www.nuclear-power.net/nuclear-power/reactor-physics/atomic-nuclear-physics/fundamental-particles/alpha-particle/
https://www.nuclear-power.net/nuclear-power/reactor-physics/atomic-nuclear-physics/fundamental-particles/alpha-particle/
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Actual Barrier: shaded ash colour 

We consider an equivalent rectangular barrier, bordered yellow. Point O is very 

important. This determines the width of equivalent barrier.  

2L=R-b 

R : Nuclear radius 

𝑏 = 2𝑍𝑒2/𝐸 

E: energy of alpha particle 

V0=16MeV 

Ref: pg 186, Introduction to Quantum Mechanics by S N Ghoshal (for alpha decay) 
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