
LAPLACE’S EQUATION IN SPHERICAL COORDINATES 

 

 
 

We begin with Laplace’s equation: 
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We can write the Laplacian in spherical coordinates as: 
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where θ is the polar angle measured down from the positive Z axis, and φ is the 

azimuthal angle. 

 
Let’s assume azimuthal symmetry; that means that our parameter V does not vary in the 

φ direction. In other words, V /   0 , 

so we can write the Laplacian in (2) a bit more simply. Assuming azimuthal symmetry, 

eq. (2) becomes: 
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This is the form of Laplace’s equation we have to solve if we want to find the electric 

potential in spherical coordinates. First, let’s apply the method of separable variables to 

this equation to obtain a general solution of Laplace’s equation, and then we will use our 

general solution to solve a few different problems. 

 

To solve Laplace’s equation in spherical coordinates, we write: 
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The Trial Solution 

 

The first step in solving partial differential equations using separable variables is to 

assume a solution of the form: 
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where R(r) is a function only of r, and Θ(θ) is a function only of θ. This means that we 

can set: 
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Substituting the relationships in (6) into (4) produces: 
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This further reduces to: 
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Separation of Variables 

 

Equation (8) allows us to separate Laplace’s equation into two separate ordinary 

differential equations; one being a function of r and the other a function of θ. Since it is 

true for every pair of r and θ, they are separately constant. This means we can separate 

(8) into: 
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The radial equation 

 

Let’s start by solving the radial equation of eq. (9). 

 

We multiply through by R(r) and expand the derivate to find: 
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The above eqation can be reduced to a second order differential equation with constant coefficient by 

means of Euler’s trick and the final solution we get is of the form:  
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where A and B are constants which will be determined once we apply specific boundary 

equations. 
 

The angular equation 
 

We solve the angular portion of equation (9) by multiplying through by Θ(θ). 

and expanding the derivative to obtain: 
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This is actually Legendre’s differential equation.  

We know that the solutions to the Legendre differential equation (these are not the 

general solution) which we are looking for the problems of Electrostatics are the 

Legendre polynomials, Pl (cos θ). 

Constructing the complete solution:
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So the solution for each integer l: 
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Thus taking sum over l the general solution to Laplace’s equation in spherical 

coordinates is: 
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