
Light: 

Light is something that stimulates our sense of vision and makes us see objects

the form of electromagnetic waves and hence posses energy and exert pressure.

Source of light→ Radiation from excited atom

excited its energy increases. When the atom returns to the ground state it emits the extra 

energy in form of electromagnetic radiations. If the wavelength of this radiation falls within 

the visible range, light is emitted.

Light ray→ Direc"on of propaga"on of light from a source.

Light beam→ Collec"on of rays in a par"cular direc"on. 

Wave front→ A hypothe"cal surface perpendicular to the rays of light. Every point on this 

surface is at equal phase.  

(1) Light rays diverges from a point source, has 

(2) A linearly distributed source has 

(3) For parallel rays wave front is plane

rays are assumed parallel and the dist

wavefront. In laboratory, we can produce it with the help of a convex lens with the 

source at its focus as nshown in the figure below
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Light is something that stimulates our sense of vision and makes us see objects. Light travels in 

the form of electromagnetic waves and hence posses energy and exert pressure.

Radiation from excited atom. Whenever an atom of the light source gets 

excited its energy increases. When the atom returns to the ground state it emits the extra 

form of electromagnetic radiations. If the wavelength of this radiation falls within 

emitted. 

→ Direc"on of propaga"on of light from a source. 

→ Collec"on of rays in a par"cular direc"on.  
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Light rays diverges from a point source, has spherical wave front. 

A linearly distributed source has cylindrical wave front.  

wave front is plane. When a source is at large distance, observed light 

rays are assumed parallel and the distant source (Like Sun rays) should have 

. In laboratory, we can produce it with the help of a convex lens with the 

as nshown in the figure below. 
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. Light travels in 

the form of electromagnetic waves and hence posses energy and exert pressure. 

Whenever an atom of the light source gets 

excited its energy increases. When the atom returns to the ground state it emits the extra 

form of electromagnetic radiations. If the wavelength of this radiation falls within 

→ A hypothe"cal surface perpendicular to the rays of light. Every point on this 

. When a source is at large distance, observed light 

ant source (Like Sun rays) should have plane 

. In laboratory, we can produce it with the help of a convex lens with the 

Plane wave front 



Properties of wavefront 

1. A wave front is the continuous locus of all the particles which are vibrating in the same phase 

at same instant.  

2. A wave front at any position of space is perpendicular to the direction of wave propagation at 

that region. 

 

Isotropic and anisotropic medium→ In an isotropic medium op"cal parameters are same in all 

directions, so light travels with same velocity in all the directions. 

In anisotropic medium optical parameters are different in different directions, so velocity of 

light is different in different directions. 

In isotropic medium wave front has specific geometric shape depending on the nature of 

source, While in anisotropic medium shape of wave front is irregular.  

Huygens’ principle: This principle predicts the future position of the wave front from its present 

position.  The principle states that: 

1. Every point on a wave front can behave as a point source of secondary waves 

2. These secondary wavelets generate waves of spherical wave front of radius ‘ct’ in a time ‘t’, c 

being the velocity of light in the concerned medium. 

3. The surface of tangency to the secondary to the secondary waves give the position of the 

wave front after time ‘t’  

 

It is used to explain the observed phenomena of reflection, refraction, interference, diffraction 

and other wave properties of light.  

 

 

 

 



Application of Huygen’s principle to prove reflection 

We can see a ray of light  incident on th

ray is also incident on this surface

incident rays. If we draw a perpendicular from point

then the line AB is called the incident wavefront. 

‘ i ‘ to the reflecting surface MN, ‘i’

on the wave front simultaneously hence it can be said that when one ray re

A the other ray is yet to reach it. It is at B. If ‘t’ be the additional time taken by the second wave to 

reach B, along BC hence:       

  BC = ct,    …………………………….(1.1)    c being the velocity of light in the concerned medium.

But within this time ‘t’ the wave at A will be reflected from the surface. According to Huygens 

principle It will generate a spherical wave front of radius ‘ct’. 

spherical wave front from C gives the reflected wave front. The reflected

angle ‘ r ‘ to the reflecting surface MN, ‘r’

 AE = ct   …………………….(1.2)

If we now consider the triangles EAC and B

 AC is the common side 

 ∠ AEC = ∠ABC = 90
0
 

 AE = BC = ct 

So the triangles are  congruent by RHS rule.

Hence ∠ECA  =  ∠BAC 

Or i = r 

This proves that in reflection at a plane surface the angle of incidence is equal to the angle of 

reflection. 

Application of Huygen’s principle to prove reflection at a  plane surface. 

incident on the surface MN at A and another ray which is parallel to this 

surface at C. As these rays are incident on the surface, so we call 

. If we draw a perpendicular from point ‘A’ to the point B on the other incident

the incident wavefront. .  The incident wave front is inclined at 

the reflecting surface MN, ‘i’ being the angle of incidence.  Since the wave reaches all points 

on the wave front simultaneously hence it can be said that when one ray reaches the surface MN at 

ch it. It is at B. If ‘t’ be the additional time taken by the second wave to 

BC = ct,    …………………………….(1.1)    c being the velocity of light in the concerned medium.

the wave at A will be reflected from the surface. According to Huygens 

principle It will generate a spherical wave front of radius ‘ct’.  The tangent CE drawn on this 

spherical wave front from C gives the reflected wave front. The reflected wave front is 

r ‘ to the reflecting surface MN, ‘r’ being the angle of reflection. AE is the reflected ray.

AE = ct   …………………….(1.2) 

If we now consider the triangles EAC and BCA 

by RHS rule.  

This proves that in reflection at a plane surface the angle of incidence is equal to the angle of 

 

and another ray which is parallel to this 

the surface, so we call them 

on the other incident ray, 

clined at an angle      

Since the wave reaches all points 

ches the surface MN at 

ch it. It is at B. If ‘t’ be the additional time taken by the second wave to 

BC = ct,    …………………………….(1.1)    c being the velocity of light in the concerned medium. 

the wave at A will be reflected from the surface. According to Huygens 

The tangent CE drawn on this 

wave front is inclined at an 

reflection. AE is the reflected ray. 

This proves that in reflection at a plane surface the angle of incidence is equal to the angle of 



Application of Huygen’s principle to prove refraction at a  plane surface. 

  

The figure shows a surface PP
/ 
 separating two media (1) and (2).  The velocity of light in medium (1) 

is ‘v1’ and that in medium (2) is ‘v2’. It is assumed that medium (2) is optically denser than medium 

(1) So v2 < v1. A ray of light is incident on the surface PP
/ 
 at A and another ray which is parallel to 

this ray is also incident on this surface at C. As these rays are incident on the surface, so we call 

them incident rays. If we draw a perpendicular from point ‘A’ to the point B on the other incident 

ray, then the line AB is called the incident wave front. .  The incident wave front is inclined at an 

angle ‘ i ‘ to the reflecting surface PP
/
, ‘i’ being the angle of incidence.  Since the wave reaches all 

points on the wave front simultaneously hence it can be said that when one ray reaches the surface 

PP
/
 at A theother ray is yet to reach it. It is at B. If ‘t’ be the additional time taken by the second 

wave to reach B, along BC hence:       

  BC = c1t,    ……………………….(1.3)    c being the velocity of light in the concerned medium (1). 

But within this time ‘t’ the wave at A will be refracted through the surface PP
/
 to the second 

medium (2). According to Huygens principle it will generate a spherical wave front of radius ‘c2t’.  

The tangent CE drawn on this spherical wave front from C gives the refracted wave front. The 

refracted wave front is inclined at an angle ‘ r ‘ to the reflecting surface PP
/
, ‘r’ being the angle of 

refraction. AE is the refracted ray. 

 AE = c2t   …………………….(1.4) 

In the right angled triangle ABC:  Sin(i) = 
��
��  =  

���
��……………………………………(1.5) 

In the right angled triangle AEC:  Sin(r) = 
��
��   = 

���
��……………………………………(1.6) 



From equations (1.5)  amd (1.6) 

 
	
�(
)
	
�(�) =  ���

��� =  ��
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 = constant = 1µ2 = refractive index of the second medium with 

respect to the first.  This proves Snell’s law of refraction. 

Equation of light wave: 

Y= a Sin(ωt-kx) 

a→ amplitude of light wave,  

(ωt-kx) → phase of light wave. If a light wave traverses a distance Δx through a medium, the 

phase difference acquired by it is Δφ = kΔx = (2π/λ)Δx 

Relation between geometrical path and optical Path: If a light traverses a distance Δx in a 

medium of refractive index μ, the optical path traversed by light will be μΔx.  

Intensity of a wave is proportional to the square of its amplitude. 

 I = fa
2
     ………………………………………….(1.7)  f is a proportionality constant 

 

INTERFERENCE OF LIGHT 

When light from two sources with same frequency and wave length, travelling in same direction 

with same state of polarization superpose on each other at some region of space, the 

distribution of intensity or energy of light of individual beam gets modified to form a pattern of 

energy distribution at that region with alternate dark and bright fringes. This is termed as 

interference. 

Mathematical treatment of interference:  

The figure shows light from two sources travelling 

almost in same direction with same frequency and 

wavelength. They will interfere according to the 

principle of superposition. Let the equation of the 

two interfering light waves be: 

Ψ1 = a1Sin(ωt – kx)        ……………………………..(1.8) 

Ψ2 = a2Sin(ωt – kx +δ) 

a1 and a2 are the amplitudes of Ψ1 and Ψ2 and δ is the phase difference between them. From 

equation (1.7) the resultant wave is given by: 

 Ψ = Ψ1 + Ψ2 



      = a1Sin (ωt – kx) + a2Sin(ωt – kx +δ) 

      = a1Sin (ωt – kx) + a2Sin(ωt – kx)Cosδ + a2Cos (ωt – kx)Sinδ 

     = (a1 + a2Cosδ) Sin (ωt – kx) + a2SinδCos (ωt – kx)    ……………………………….(1.9) 

Let  a1 + a2Cosδ = Rcosθ  ……………………………………………(1.10) 

 a2Sinδ    =    Rsinθ 

Substituting (1.10) in (1.9) 

 Ψ = RSin((ωt – kx + θ)   ………………………………………(1.11) 

R is the amplitude of the resultant wave.  From equation (1.10): 

 R
2
 = (a1 + a2Cosδ)

2
 + (a2Sinδ)

2
 

Or R
2
 = a1

2
 + a2

2
 + 2a1a2Cosδ    ……………………………..(1.12) 

Since intensity is proportional to the square of the amplitude, The expression for resultant 

intensity becomes: 

 I = I1 + I2 + 2I1I2Cosδ   ……………………………………(1.13) 

Equation (1.12) shows that intensity varies with variation of phase difference δ. 

Condition for constructive interference or maxima: 

Equation (1.13) shows that resultant intensity is maximum when Cosδ takes its maximum 

possible value i.e. Cosδ = 1. So the condition for maxima is: 

 δ = 2nπ    ………………………..(1.14)   n = 0, ±1, ±2, ±3………. 

and the maximum intensity is  

 Imax = ��I� +  �I���
    …………………………………….(1.15) 

Condition for destructive interference or minima: 

Equation (1.13) shows that resultant intensity is minimum when Cosδ takes its minimum 

possible value i.e. Cosδ = -1. So the condition for maxima is: 

 δ = (2n + 1) �
�    ………………………..(1.14)   n = 0, ±1, ±2, ±3………. 

and the maximum intensity is  

 Imin = ��I�  − �I���
    …………………………………….(1.15) 



Hence if a screen is placed in the path of the interfering beams, it will show maximum 

brightness at some positions and minimum brightness at some other positions. Thus a pattern 

is formed on the screen. This pattern is called interference pattern or interference fringes. 

Conditions for obtaining a distinct pattern.  

If the two interfering waves have widely different intensities, the ��I� +  �I���
 will not differ 

much from ��I�  −  �I���
.  So it will be difficult to distinguish Imax from Imin. But if the two light 

waves are equally intense i.e. I1 = I2 = I0 then: 

 Imax = 4I0 ………………………………………………………(1.16) 

 Imin = 0 

Due to zero intensity the minimas indicate complete extinction of light and thus are completely 

dark. Hence the dark minimas are easily distinguishable against bright maximas. Hence to 

observe a distinct interference pattern the teo interfering light waves should have equal 

intensity. The resultant intensity is thus given by: 

 I = I0 + I0 + 2I0Cosδ 

Or I = 2I0(1 + Cosδ) 

Or I = 4I0Sin� �

�    ………………………………………….(1.16) 

However the conditions for maxima and minima remain same. 

Sustained Interference and coherence. 

If the interference pattern formed on the screen remains constant with time the interference is 

said to be sustained. For sustained interference to occur, the phase difference between the 

interfering light waves at a particular point on the screen should remain constant with time. 

Such light waves are said to be coherent. If the phase difference changes with time the pattern 

on the screen will go on changing and it will not be possible to observe the pattern  

Coherent light sources: 

The light sources from which the emitted lights always maintain constant phase relation 

between them are coherent sources.   

Light beam from two independent light sources, viz., two candles cannot maintain constant 

phase relation at any point in space, so they are incoherent sources. So even if they interfere 

they will not produce sustained interference. 

 

 



Conditions for obtaining distinct sustained interference pattern 

(1) The superposing light beams must be coherent, means they should maintain constant 

phase difference between them. 

(2) They should propagate almost in the same direction. 

(3) They must be monochromatic and have same frequency. If light is polychromatic, the 

interference fringe of one colour may falls over the higher order interference fringe of 

other colour to degrade visibility. 

(4) They should have same state of polarization. 

(5) They should have almost same amplitude or intensity. 

 

Production of coherent light sources:  

Coherent light waves can be produced by splitting a single wave from a single source in two 

parts. There are two methods for spliiting a light wave. 

1. Division of wave front→ Wave front of light from a narrow source is divided into two parts by 

reflection, refraction or by using slits to split the wave front to generate two coherent sources 

as in (a) Young’s double slit experiment, (b) Fresnel’s biprism experiment, (c) Lloyd’s mirror 

experiment.  

Division of amplitude→ Amplitude of light from a source is divided to get two coherent sources 

by means of partial reflection and refraction as in (a) Thin film experiment (b) Newton’s ring 

experiment.  

 

YOUNG’S DOUBLE SLIT EXPERIMENT 

  

 



Let S be a monochromatic source of light.  S1 and S2 are two narrow slits placed at equal distance 

from S, i.e. S1P = S2P. The point C is equidistance from S1 and S2. Therefore, path difference at 

C is zero. Let D is the distance between the slits and screen and d is the distance between two 

slits. Let us consider a point P on the screen at distance x from C. The path difference between 

two waves arriving at P is given by: 

Path difference = S2P - S1P 

By using simple geometrical laws, we can have the following relations: 

 PQ = x - 
�
�    and   PR = x + 

�
�     …………………………………(1.17) 

Path difference between the interfering waves is: 

 ∆x = S1P – S2P     …………………………………….(1.18) 

(S1P)
2
  = (S1Q)

2
 + (PQ)

2
 =   D

2
 +  x −  d

2#
�
            …………………………………..(1.19) 

(S2P)
2
 =  (S2R)

2
 + (PR)

2
 =    D

2
 +  x +  d

2#
�

 

(S2P)
2
 - (S1P)

2
 = D

2
 +  x +  d

2#
�
 -  D

2
 +  x −  d

2#
�

 = 2xd 

Or (S1P + S2P)( S1P - S2P) = 2xd  

Or   (S1P + S2P)∆x = 2xd            …………………………………(1.20) 

Since the point P lies very close to C, 

S2P≈S1P≈D   

So S1P+S2P=D + D = 2D     …………………………………….(1.21) 

Substituting equation (1.21) in (1.20) 

 2D.∆x = 2xd 

Or ∆x = 
$�
%     …………………………………………(1.22) 

Equation (1.22) gives the expression for path difference between the interfering waves at P. 

The corresponding phase difference at P is: 

 δ = (
��
�

)Δx    …………………………………………….(1.23) 

 

 



Condition for maxima: 

 δ = 2nπ 

Or (
��
�

)Δx  = 2nπ 

Or (
��
�

) $�
%  = 2nπ 

Or   ………………………………………………………..(1.24) 

 

Condition for maxima: 

 δ = (2n+1)π 

Or (
��
�

)Δx  = (2n+1)π 

Or (
��
�

) $�
%  = (2n+1)π 

Or   ………………………………………………………..(1.25) 

 

Fringe width. 

Fringe width ‘β’ is the separation between two successive maxima or two successive minima on 

the screen, i.e. the difference between the values of ‘x’ between successive maxima 

orsuccessive minima. 

For Maxima : x = 
&�%

�   

Differentiating: ∆x = 
�&�%

�  …………………………………………………(1.26) 

For two consecutive orders ∆n = 1.  Fringe width ‘β’  = (∆x)∆n= 1. Substituting ∆n = 1 in (1.26) 

Fringe width :          ……………………………………………………………..(1.27) 

 

For polychromatic light (white light) 

Polychromatic light has a number of colours corresponding to a number of wavelengths. As 

path difference ‘∆x’ and fringe width ‘β’ is wavelength dependent, so the positions of maximas 

and minimas are different for different colours. Hence it is expected that each maxima will 

exhibit a spectrum. But at higher orders it may so happen that maxima of red for one order falls 

on the maxima of violet of some other order or may fall on minimas of other orders. So instead 

of distinct fringes the screen will show an uniform illumination at higher orders. However for 

zero order maxima the value of order ‘n’ is zero. So path difference is zero, whatever be the 

x = 
&�%

�  

x = 
&�%

�  

β = 
�%
�  



value of wave length. So, all colours will form zero order maxima at the same position. So if the 

incident light is white light, the zero order maxima is also white. This fringe is known as the 

achromatic fringe. Hence only for white light we can didentify the position of zero order. For 

monochromatic light all the maximas appear alike and equally intense. So the zero order cannot 

be identified. 

 

FRESNEL BIPRISM EXPERIMENT 
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: Schematic diagram of Fresnel Biprism 

 

In Fresnel’s biprism interference occurs by division of wave front. The biprism BAC is a prism 

with the obtuse angle of prism A ≈ 179
0
. It can be considered to be a combination of two thin 

prisms ABD and ACD of very small angles with their bases facing each other and joined 

together.  

S → A narrow source slit placed with its length parallel to the edge of the biprism, the edge 

being the line of intersection of the two faces represented by AB and AC. 

The incident wavefront is divided in two parts and suffer separate reflections from upper and 

lower prisms. The refracted beams being coherent interfere with each other and the resultant 

pattern is obtained on a screen. A beam of light SD incident normally on the biprism gets 

refracted along DQ due to the upper prism ABD and along DP due to the lower prism ACD after 

suffering a deviation δ.  Another two beams of light SB and SC get refracted along DR and DT 

due to the upper and lower prism respectively after suffering a deviation = δ.  The light beams 



within the cone GS1T seem to diverge from S1 and those within the cone RS2H seem to diverge 

from S2. So  S1 and S2 are the virtual images of S which serve as coherent sources of light. Apart 

from the refraction mechanism, the scheme of interference is same as Young’s double slit 

experiment and fringes of same shape will be formed.    

Determination of wavelength from biprism experiment 

α → Angle of each thin prism - ∠ABD = ∠ACD, where α is very small.  

a → distance of S from biprism, 

b → distance of screen from biprism 

δ → angle of minimum deviation for each thin prism. 

 
'
�  = Distance between S1 and S = Distance between S2 and S 

So  d = Distance between S1 and S2 

Comparing with Young’s double slit experiment, here: 

D = a + b = distance between source and screen which is analogous to distance between double 

slit and screen. 

The distance between the coherent sources is = d 

If λ be the wavelength of light used then the fringe width β is given by  

 β = 
 %�
�  = β = 

 (()*)�
�      ………………………………(1.28) 

β can be measured by taking readings.  ‘a’ and ‘b’ can be measured by mounting the screen and 

source on an optical bench. Hence if  ‘d’ is known,  then the unknown wavelength ‘λ’ of the 

light used can be calculated from equation (2.4). But ‘d’ being the distance between virtual 

sources cannot be directly measured.  It has to be measured using suitable experimental 

arrangements. 

Determination of wavelength of light by Fresnel biprism 

When a beam monochromatic light from a source is allowed to fall on the Fresnel’s biprism 

after passing through a thin slit, two virtual sources are formed after refraction. These two 

images act as coherent sources and interference fringes are formed.  The corresponding fringe 

width ‘β’ is given by: β = 
 %�
�  

Or  λ = 
��
%    ……………………………………………………………(1.29) 



D can be measured by mounting the apparatus on an optical bench and noting the distance 

between the source slit and the screen. Fringe width β can be noted by shifting the eye piece 

attached with the screen along the fringes and taking the readings from a micrometer scale 

arrangement. The main problem is the determination of ‘d’, the distance between the virtual 

sources. 

Measurement of d 

                X 
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Fig. 3.4. Experimental determination of β 

XY is the focal plane of an eye piece. The source,  biprism and an eye piece are mounted on an 

optical bench. A lens is placed between the biprism and eye piece, whose focal length is less 

than one fourth of the distance between them. The lens is moved parallel to the optical bench. 

There are two positions between the biprism and eye piece, where if the lens is placed real 

images of S1 and S2 are formed on XY. For position L1, the image of S1 is at Q and that of S2 is at 

P. Similarly for position L2, the image of S1 is at C and that of S2 is at B.  

d1 = distance between P and Q 

d2 = distance between B and C 

Since the images are real hence d1 and d2 can be measured. The distance between S1 and S2 is 

given by  d = �d�d�   ……………………………………….(1.30) 

The value of ‘d’ thus obtained is substituted in equation (1.29) to calculate the value of λ. 

Determination of acute angle of biprism 

The angle of minimum deviation δ being very small we can write 

 δ = tanδ = 

+
�
(  = 

'
�,   …………………..(1.31) From the fig . 

So   d = 2aδ   ……………………………………..(1.32) 

If µ is the refractive index of the prism, then the expression for minimum deviation is given by: 



 δ = (µ - 1)α      , α being the angle of prism.  

Substituting this expression of δ in equation (1.31) we have 

 d = 2a(µ - 1)α       

Or α = 
�

�((� - �)   …………………………(1.33) 

‘d’ can be determined experimentally. ‘a’ can be measured. So with known value of µ, the acute 

angle of biprism (α) can be calculated. Equation (1.33) can also be used to find the refractive 

index ‘µµµµ’ if the value of δδδδ is known. 

 

PHASE CHANGE ON REFLECTION: STOKES TREATMENT  
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Fig (a) shows an absorption less surface AB separating two media (1) and (2) It is assumed that 

medium (i) is optically rarer that medium (2) i.e. µ1 < µ2, where . µ1 and µ2 are the refractive 

indices of (1) and (2) 

r = reflection coefficient of the surface of AB facing (1)  

t = transmission coefficient from (1) to (2) 

r
/
 = reflection coefficient of the surface of AB facing (2) 

t
/
 = transmission coefficient from (2) to (1) 

A wave of amplitude ‘a’ is incident along PO at the point O on AB. OR is the reflected wave and 

OQ is the transmitted wave.  

ar = amplitude of OR 

at = amplitude of OQ 

Now keeping the point of incidence O on AB fixed let it be assumed that the directions of the 

waves OR and OQ are reversed along RO and QO respectively (Fig. b). Now, the principle of 



reversibility of light demands that their resultant effect should the incident light with same 

amplitude but reversed in direction i.e. along OP. 

Now RO is reflected along OP and transmitted along OS 

ar
2
 = amplitude of the reflected part of RO along OP 

art = amplitude of the transmitted part of RO along OS 

atr
/
 = amplitude of the reflected part of QO along OS 

att
/
 = amplitude of the transmitted part of QO along OP 

So the net amplitude along OP is = ar
2
 + att

/
.  

According to our argument this amplitude should be ‘a’ 

Hence : a = ar
2
 + att

/
. 

Or  r
2
 + tt

/
  =  1    ………………………(1.34) 

Also the net amplitude along OS is = art + atr
/
.  

Since initially there was no wave along OS or SO , So OS will be non- existent. Consequently the 

amplitude of OS should be zero. 

Hence:  art + atr
/
 = 0 

Or  r + r
/
 = 0 

Or  r
/
 = -r ……………………………………….(1.35) 

This shows that if one of the reflection coefficients is positive the other must be negative and 

vice versa. A negative refractive index denotes a phase change of ππππ of the wave on reflection. 

Hence a phase change of ππππ occurs on reflection either from rarer to denser medium or from 

denser to rarer medium, but from Stokes treatment it cannot be predicted which one. 

The actual fact is revealed experimentally in Lloyd’s mirror experiment, where interference 

occurs by the process of division of amplitude between waves direct from the source and waves 

reflected from an optically denser medium. It was found that the central fringe corresponding 

to zero path difference is dark instead of bright. This is possible only if light waves reflected 

from the surface of a denser medium undergoes a phase change of π. Thus a phase change of ππππ 

occurs when light coming from a rarer medium gets reflected at the surface of a denser 

medium. 

 

 



LLOYD’S MIRROR  
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Fig:.  Schematic diagram of Lloyd’s single mirror experiment. 

AB is a plane mirror. S is a source of light.  A beam of light SA strikes the mirror at A and gets 

reflected along AP. Another beam of light SB strikes the mirror at B and gets reflected along BQ. 

Interference occurs at P between the direct light from S and the reflected light and interference 

fringes are obtained on a screen separated from the source by a distance ‘D’. AP and BQ 

appear to diverge from S
/
, which is the virtual image of S. It seems that S and S

/
 are the two 

coherent sources of light. So out of the two coherent sources one is real and the other is 

virtual. Apart from the reflection mechanism, the scheme of interference is same as Young’s 

double slit experiment and fringes of same shape will be formed. In the given fig. the point of 

zero path difference is outside the zone of interference. So, less than one half of the fringes, 

will be obtained within the region PQ. In order to observe the zero path difference fringe the 

screen has to be moved to the point B. At B the light waves SB and S
/
B have zero path 

difference and zero order fringe will be formed there. The zero order fringe was found to be a 

dark fringe. This indicates that even if the path difference is zero an additional phase difference 

of π must have crept in from somewhere. SP being a direct beam from S has no scope of phase 

change. So the only option is that the phase change must have occurred in the reflected ray. 

Here the incident ray SA after coming from a rarer medium (air) gets reflected at the mirror 

surface which is a denser medium. This clearly points out that when light is reflected at the 

surface of a denser medium it undergoes a phase change of π, and the corresponding reflection 

coefficient is negative.  Hence the reflection coefficient corresponding to reflection from a rarer 

surface is positive and in that case no phase change occurs. 

 



Determination of wavelength from Lloyd’s mirror experiment 

Comparing with Young’s double slit experiment, here: 

D = distance between source and screen which is analogous to distance between double slit 

and screen. 

 
'
� = distance of real source S from the mirror. 

Since for reflection in a plane surface object distance is equal to the image distance hence: 

 
'
� = distance of virtual source S

/
 from the mirror.  

So the distance between the coherent sources is =d 

If λ be the wavelength of light used then : 

Fringe width =  β = 
 .�
'   ……………………..(1.36) 

β can be measured by taking readings.  ‘D’ can be measured by mounting the screen and source 

on an optical bench. ‘d’ can also be measured. Using these values λ can be calculated from 

equation (2.3).  

Comparisn between biprism and Lloyds mirror 

Serial no. Biprism fringes Lloyd’s mirror fringes. 

 

1 In biprism the complete pattern of 

fringes is obtained with zero order 

fringe and higher orders on either 

side of zero order. 

Less than half of the fringe pattern is 

obtained. The zero order is not obtained 

unless the screen is in contact with one end 

of mirror 

2 Zero order fringe is bright Zero order fringe is dark 

3 The Zero order fringe is not very 

sharp 

The Zero order fringe if present is sharp 

4 The two coherent sources producing 

interference fringes are virtual. 

One of the two coherent sources producing 

interference fringes are real and the other 

one is virtual. 

 

 

 



 INTERFERENCE IN THIN FILMS 

 

I: INTERFERENCE  BY A PARALLEL SIDED THIN FILM 

When a thin film of some transparent material is exposed to light, circular patterns of brilliant 

colours can be seen for e.g. colours seen in a soap bubble, or formation of coloured rings on a 

wet road on which car oil has been spilled. This is due to interference of light reflected from 

upper and lower surface of the film via the method of division of amplitude. 

 

    A       N          R1      R2 

    i   F           Air 

    B             G  i   D 

   t        θ    θ        µ 

                 M     θ 

           C Q  i E 

   Air         i H 

       T1            T2 

Fig. 5.1. Interference of light by parallel sided thin film. 

Let a parallel sided thin film of refractive index µ and thickness, ‘t’ be considered within an air 

medium. It is assumed surfaces of the film have a high reflection coefficient  

AB → A beam of light of amplitude ‘a’ incident on the upper surface of the film. 

BR1 → Light reflected from the upper surface of the film. 

BC → Light transmitted into the film through the upper surface. 

CD →  Light reflected from the lower surface of the film. 

CT1 → Light transmitted outside the film through the lower surface 

DR2 → Light transmitted outside the film through the upper surface 

DE → Light re-reflected into the film at the point D 

ET2 → Corresponding transmitted light. 



The reflection coefficient of the film surfaces being high it can be assumed that the amplitude 

becomes insignificant after two reflections and hence other subsequent reflections inside the 

film can be ignored. 

FD and EH are perpendiculars drawn from D and E on BR1 and CT1 respectively 

CG is the perpendicular drawn from C on BD.  

∠ABN = i = Angle of incidence = ∠FDB = ∠CEH    from the geometry of the fig. (5.1) 

∠MBC = θ = Angle of refraction = ∠GCB = ∠CDQ    from the geometry of the fig. (5.1) 

The reflected beams BR1 and DR2 are parts of the same wave obtained by division of amplitude. 

So they are coherent and will interfere. Also the transmitted beams CT1 and ET2 are parts of the 

same wave obtained by division of amplitude. So they are coherent and will interfere. Hence 

both for reflected beams and transmitted beams interference fringes will be formed. Since the 

reflected beams are parallel, the interfering beams superpose at infinity. Hence the fringes are 

formed at infinity. The same thing holds for transmitted beam. So to observe the fringes a 

convex lens is required to focus the parallel beams at its focal plane. 

Path difference and conditions of maxima and minima for reflected beams 

The beam DR2 travels through the thin film twice before emerging from it. So it travels an extra 

optical path: µ(BC + CD) as compared to BR1. On the other hand BR1 travels an extra path BF in 

air as compared to DR2. So the net optical path difference between the beams BR1 and DR2 is: 

 ∆x = µ(BC + CD) – BF 

Now, from the geometry of the Fig. (5.1) BC = CD, which gives 

 ∆x = 2µBC – BF 

G is the midpoint of BD and CG is perpendicular to BD. CG = t. This gives 

 ∆x = 2µ.CG.Secθ - BD.Sin(i) 

From Snell’s law of refraction Sin(i) = µSinθ 

∴∴∴∴  ∆x = 2µ.CG.Secθ - µ.BD. Sinθ 

Or ∆x = 2µ.CG.Secθ - 2µBG.Sinθ            as BD = 2BG 

Or ∆x = 2µ.CG.Secθ - 2µCG.tanθ.Sinθ    

Or ∆x = 2µ.t.Secθ - 2µt.Sin
2θ.Secθ 

Or ∆x = 2µ.t.Secθ.(1 - Sin
2θ) 

Or ∆x = 2µ.t.Secθ.Cos
2θ 



Or    ……………………………………..(1.37) 

Equation (5.1) gives the path difference between the reflected interfering beams BR1 and DR2 

BR1 is reflected at the surface of a denser medium. So it suffers a phase change of π, while the 

beam DR2 comes via reflection at C i.e. at the surface of a rarer medium and hence suffers no 

phase change. Hence between the beams BR1 and DR2 an extra phase of π occurs other than 

that due to the path difference. So net phase difference between the two reflected beams is: 

 ∆φ = 
��
�

 . 2µtCosθ - π       (Note: +π can also be used) 

Condition for maxima  

 ∆φ = 2nπ 

Or 
��
�

 .2µtCosθ - π = 2nπ   where n = 0, 1, 2,……. 

0r     ……………………………………….(1.38) 

 

Condition for minima  

 ∆φ = (2n - 1)π 

Or 
��
�

 .2µtCosθ - π = (2n – 1)π       where n = 1, 2, 3….. 

Or       ……………………………………………(1.39) 

 

 

For transmitted beams: The value of the path difference is same as for reflected beams but 

there is no phase change of π on reflection. So –  

Condition for maxima  

 ∆φ = 2nπ 

Or 
��
�

 .2µtCosθ  = 2nπ   where n = 0, 1, 2,……. 

Or     ……………………………………….(1.40) 

 

Condition for minima  

          ∆φ = (2n - 1)π,  where n = 1,2,3 Note: + sign can also be used but for that case n = 0,1,2 ….) 

∆x = 2µt.Cosθ 

2µtCosθ = (2n + 1)
�

� 

2µtCosθ = nλ 

2µtCosθ = nλ 



Or 
��
�

 .2µtCosθ  = (2n – 1)π       

Or     …………………………………………(1.41) 

 

So it is seen, that the condition for maxima in reflected beams is same as the condition for 

minima in transmitted beams and vice versa. So reflected and transmitted fringes, are 

complementary to each other. θθθθ decreases with increase of order. So the order of fringe 

decreases outwards. 

Nature of the fringes 

             Circular Fringe of a particular order 

 

 

         Source 

 

 

 

 

 

Fig. Shape of the fringes in a parallel sided thin film. 

In the expression of path difference, for both reflected and transmitted beams, thickness of the 

film ‘t’ is constant for a parallel sided film. So for a given λ, the fringe order ‘n’ depends directly 

on Cosθ, and hence on ‘θ’ So fringe of a particular order is the locus of all points having the 

same value of ‘θ’. Now, ‘θ’ is the angle of refraction. So for ‘θ’ to remain fixed, the angle of 

incidence should also remain fixed. The locus of all points on the surface of the film, at which 

angle of incidence of the beams coming from a single source, is constant, is the point of 

intersection of a cone of semi vertical angle ‘i’ with the film surface and hence is a circle on the 

film surface. If all the corresponding reflected beams are collected corresponding to a fixed 

angle of incidence a circular fringe will be obtained. The fringe pattern for different angles of 

incidence will be series of concentric bright and dark circles as shown in Fig. below. The same 

thing holds for transmitted beams also. These fringes are called fringes of equal inclination or 

Haidinger fringes. 

 

2µtCosθ = (2n - 1)
�

� 



 

 

 

 

 

 

Fig. The nature of fringes with fringe width and order decreasing outwards. 

For a polychromatic light source 

o The refractive index ‘µ’ and thickness, ‘t’ is constant. So, for a particular order, ‘θ’ 

changes with wave length λ’. Hence for each wavelength of a polychromatic light a 

circular pattern will be obtained for a given order. Hence corresponding to one order, a 

number of circular fringes of different colours will be obtained as shown in Fig. below. 

 

Fig. Appearance of the fringes with polychromatic light 

Zero order fringe 

For zero order corresponds to zero path difference. The path difference 2µtCosθ will be zero 

only if Cosθ is equal to zero, i.e. θ = 90
0
  

When light coming from a rarer medium is incident on the surface of a denser medium the 

angle of refraction is always less than the angle of incidence. The maximum possible value of 

angle of incidence can be 90
0
. So the maximum possible angle of refraction is less than 90

0
. 

Hence it is never possible for Cosθ to be zero thereby making zero order fringe impossible. 

When light coming from a denser medium is incident on the surface of a rarer medium the 

angle of refraction is always greater than the angle of incidence. So for an angle of incidence 

less than 90
0
 (critical angle)the angle of refraction can be equal to 90

0
. So it is possible for Cosθ 

to be zero thereby making zero order fringe possible. For reflected fringes the zero order fringe 



is a dark fringe, while for transmitted fringes the zero order fringe is a bright fringe as is 

evident from the maxima and minima conditions  

 

For an Ultrathin film 

For an ultrathin film, the thickness of the film is negligible compared to the wave length of light. 

So as ‘t’ → 0, the path difference ∆x = 2µtCosθ can practically taken to be zero as compared to 

wave length for all values of θ. So ∆x = 0 corresponds to a zero order minima for reflected 

fringes for all ‘θ. Hence instead of a fringe pattern, a uniform darkness will be obtained 

throughout the field of view. This explains the darkening of a thin soap bubble just before it 

explodes.  

 The transmitted fringes being complementary to the reflected fringes, it will exhibit an 

uniform brightness throughout the field of view, indicating that the energy absent in reflected 

light is fully present in transmitted light. 

Difference between Reflected and transmitted fringes for a parallel sided thin film 

Serial no. Reflected fringes Transmitted fringes 

1. Condition for maxima is  

2µtCosθ = (2n + 1)
�

� 

 

Condition for maxima is : 2µtCosθ =nλ 

2 Condition for minima is : 2µtCosθ =nλ Condition for mniima is  

2µtCosθ = (2n + 1)
�

� 

3 The zero order fringe if present is a 

dark fringe. 

The zero order fringe if present is a bright 

fringe. 

 

  

  

 

 

     

 



 

 

II. INTERFERENCE BY A WEDGE SHAPED FILM 
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Fig. 5.5 . Interference by a wedge shaped thin film. 

   When a wedge shaped thin film of some transparent material is exposed to light, straight line 

patterns of brilliant colours can be seen for This is due to interference of light reflected from 

upper and lower surface of the film via the method of division of amplitude.   

 Let wedge shaped thin film YXZ of refractive index µµµµ and angle of wedge ‘αααα’ be considered 

within an air medium. It is assumed surfaces of the film have a high reflection coefficient  

AB → A beam of light of amplitude ‘a’ incident on the upper surface of the film. 

BE → Light reflected from the upper surface of the film. 

BC → Light transmitted into the film through the upper surface. 

CD →  Light reflected from the lower surface of the film. 

DE → Light transmitted outside the film through the upper surface 

MF → Normal to XY 

NF, DG → Normal to XZ 

∠MFN → angles between the normals to the two surfaces of the wedge = α 



BC produced meets the normal DG at G 

DG → Twice the thickness of the film at point D = 2t 

t → Thickness of the film at point D 

i = angle of incidence = ∠ABM = ∠BME = Angle of reflection 

DP → perpendicular to  BE 

DT → Perpendicular to BC 

θ → ∠FBC = Angle of refraction 

From the geometry of the Fig. (5.5) 

∠PDB = i,    ∠BDT = θ,   ∠BCN = ∠NCD = ∠CDG = ∠ DGC = θ+α     ……………………………(1.42) 

Hence CD = CG   …………………………………(1.43) 

The beam DE travels through the thin film twice before emerging from it. So it travels an extra 

optical path: µ(BC + CD) as compared to BE. On the other hand BE travels an extra path BF in air 

as compared to DR2. So the net optical path difference between the beams BE and DE is: 

 ∆x =   µ(BC + CD) – BP 

Or ∆x =   µ(BC + CG) – BP     from (1.43) 

Or ∆x =   µ.BG – BP    

Or ∆x =   µ.(BT + TG) – BD.Sin(i)      ……………….from the fig.  

Or ∆x = µ{BD.Sinθ + DG.Cos(θ+α)} - µBD.Sinθ 

Or ∆x = µBD.Sinθ + µ DG.Cos(θ+α) - µBD.Sinθ 

Or ∆x = µ DG.Cos(θ+α) 

Or     ……………………………………………….(1.44)  

 

Assuming light to be incident normally on the wedge shaped film angle ‘θ’ is zero. Also for the 

wedge shaped film to be thin the angle ‘α’ should tend to zero. This gives the expression for 

path difference as: 

     ………………………………………………………(1.45) 

BE is reflected at the surface of a denser medium. So it suffers a phase change of π, while the 

beam DE comes via reflection at C i.e. at the surface of a rarer medium and hence suffers no 

∆x = 2µtCos(θ+α) 

∆x = 2µt 



phase change. Hence between the beams BE and DE an extra phase of π occurs other than that 

due to the path difference. So net phase difference between the two reflected  

 ∆φ = 
��
�

 . 2µt - π    …………………….(1.46)   (Note: +π can also be used) 

Condition for maxima 

∆φ = 2nπ 

Or 
��
�

 . 2µt - π = 2nπ   where n = 0, 1, 2,……. 

0r     ……………………………………….(1.47) 

 

Condition for minima  

 ∆φ = (2n - 1)π 

Or 
��
�

 . 2µt - π = (2n – 1)π       where n = 1, 2, 3….. 

Or     …………………………………………..(1.48) 

 

Nature of the fringes 

In the expression for path difference it is seen that the thickness ‘t’ of the film varies from point 

to point. The expressions of maxima and minima, shows that the order of the fringe, is directly 

proportional to the thickness at the concerned point. Hence fringe of a particular order will be 

the locus of points having constant thickness. This locus is a straight line parallel to the edge of 

the wedge. So fringes will be alternate bright and dark straight lines parallel to the edge of the 

wedge as shown in Fig. (5.6). The fringes are localized fringes since the interfering occurs at the 

exit surface of the film. These fringes are called fringes are called fringes of equal thickness or 

Fizeau fringes 

 

zero order minima                tn = Thickness corresponding to 

            n
th

 order fringe. 

             tn 

 

Fig. Interference fringes for a wedge  

shaped thin film 

2µt = (2n + 1)
�

� 

2µtCos = nλ 



Zero order fringe 

The zero order fringe will occur at the positions where thickness of the film is zero. This position 

is the edge of the wedge. Due to the phase change of π due to reflection the zero order will be 

a dark fringe. So the zero order dark fringe will be formed at the edge of the wedge as shown in 

Fig. (5.6). 

Determination of fringe width 

          β           β    

                      P        α    M                      

         α                  ∆t 

        tn      tn+1        

      P       α       M       R 

        R                 

 

Fig. Diagram for calculation of fringe width β 

Fringe width is the separation between two consecutive maximas or two consecutive minimas. 

As a fringe of a particular order is the locus of points with constant thickness, hence the 

separation (β) corresponding to the difference of thickness (∆t) between two consecutive 

maximas or two consecutive minimas gives the fringe width. 

Condition for minima:  2µt = nλ 

Differentiating: 2µ.∆t = ∆nλ 

For consecutive orders ∆n = 1, which gives 

∆t = 
�

���/0 ……………………………………….(1.49) 

Now from the  Fig. above : ∆t = β.tanα ………………….(5.15)where β is the fringe width. 

Assuming α to be very small for a thin wedge, tanα = α , which gives  

 ∆t = β.α   …………………………………….(1.50) 

From equations (1.49) and (1.50) the value of fringe width is 

      ……………………………..(1.51)   

 

β =
�

��� 



Since µ, θ and  α are constants, hence the fringe width is constant for monochromatic light. So 

the straight line fringes are equidistant 

For normal incidence i= θ = 0 and the expression for fringe width becomes 

  ∆t = 
�

�� ……………. …………………………(1.52) 

Which gives :     ………………………………………..(1.53) 

   

Since µ and α are constants, hence the fringe width is constant for monochromatic light. So the 

straight line fringes are equidistant. 

For a polychromatic light source 

The refractive index ‘µ’ and angle of wedge ‘α’ is constant. So, for a particular order, ‘t’ changes 

with wave length λ’. Hence for each wavelength of a polychromatic light a straight line pattern 

will be obtained for a given order. Hence corresponding to one order, a number of straight line 

fringes of different colours will be obtained as shown in Fig. (5.7). 

 

Fig. 5.8.  Straight line coloured fringed formed by white light in wedge shaped film. 

 

Need of an extended source                S1       E 

   S  E               S2 

 

 

 (a)        (b) 

 

Fig. Diagram demonstrating the need of extended source. 

         

Let S be a narrow or point source of light as shown in Fig. (5.9a) A beam of light from S enters 

the eye E after one reflection from the upper surface of the film and one from lower surface. 

Another ray of light from S is incident at a different angle After the two reflections at the two 

β =
�

��� 



surfaces of the film it cannot enter the eye as shown in Fig. (5.9a). So only a limited portion of 

the film become visible. To observe the whole film, the eye has to be continuously shifted from 

one position to the other. 

 If however an extended source S1S2 is used (fig. 5.9b) the light reflected from a large 

section of the film enters the eye, placed in a suitable position. Thus the entire film can be 

viewed simultaneously without moving the eye, as shown in (fig. 5.9b). Hence an extended 

source is required to view the film 

 

Difference between fringes formed by Fizeau fringes and Haidinger fringes 

Serial no. Fizeau fringes Haidinger fringes 

1 These fringes are formed by 

interference due to a wedge shaped 

thin film. 

These fringes are formed by 

interference due to a parallel sided to a 

thin film. 

2 Fringes are loci of points of equal 

thickness. 

Fringes are loci of points of equal 

inclination. 

3 The fringes are straight lines parallel to 

the edge of the wedge. 

The fringes are concentric circles 

4 The fringes are localized. The fringes are formed at infiniy 

5 The zero order fringe is always present 

and is formed at the edge of the wedge 

whatever be the nature of the film and 

the medium on either side of it. 

The zero order fringe is possible only if 

the medium on either side of the fringe 

is optically denser that the material of 

the film. 

6 The fringe width is constant. The angular fringe width decreases with 

decrease of order. 

7 The fringe width is finite even for an 

ultra thin film and so the fringe pattern 

is present with different orders. 

For an ultra thin film the angular fringe 

width tends to infinity and the zero 

order fringe fills up the entire field of 

view. 

 

 

 

 



III. NEWTONS’ RINGS. 
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Fig. 5.11. The arrangement for formation of Newton’s  rings. 

P → A plane glass plate 

C → A plano convex lens of large radius of curvature placed on P 

O → point where C touches P 

C being of large radius of curvature it encloses a wedge shaped thin film of refractive index µ 

between itself and P. It is assumed that µ is less than the refractive index of P. 

S → Source of light 

L → A collimating lens. 

G → A half silvered glass plate inclined at an angle of 45
0
 to the horizontal 

M→ a microscope 

Beams of light from S are rendered parallel by l and allowed to be incident on G. Being a half 

silvered plate G will reflect half of the incident light and transmit the remaining.  As G is inclined 

at angle of 45
0
 to the horizontal, hence the incident light will suffer 90

0
 deviation on reflection 

and fall on C normally. As C has a large radius of curvature, it can be assumed that the light 

travels through C and is incident on the thin film normally. Consequently this light will be 

reflected from C and rereflected from P and finally gets transmitted through G to reach M.  The 



light reflected from the upper and lower surfaces of the film, being coherent, interfere on 

superposition. Fringes of equal thickness are formed at the focal plane of M. Since the upper 

surface of the thin film is circular (concave) so the corresponding to a particular order the locus 

of points having constant thickness will be circular. Hence the fringes will be a set of bright and 

dark concentric circles with O as centre. These concentric circles or rings are called Newton’s 

rings. At the point of contact, O the thickness of the film is zero. This corresponds to zero path 

difference and a zero order fringe. But due to reflection at the surface of denser medium, a 

phase change of π occurs, which leads the central fringe to be a dark fringe (Fig. 5.12). 

Newtons’ rings are also localized fringes as they are formed on the 

exit surface of the film.  

 

Fig. Photograph of Newton’s rings. 

 

 

 

Conditions for maxima and minima. 

The film concerned here is a wedge shaped thin film. The conditions of maxima and minima are 

given by: 

 2µt = (2n + 1)
�

�      for maxima  …………………………………………………(1.54)  

      = nλ           for minima 

Calculation of radius of a Newton’s rings 

       X 

 



O
/
 → centre of the circle of which the convex surface of the plano convex lens is a part. 

O
/
L = O

/
O =R → Radius of curvature of the convex surface of the plano convex lens. 

XO = 2R → diameter of curvature of the convex surface of the plano convex lens. 

ML = rn → Radius of the n
th

 order ring. 

O → Point where the plano conves lens touched the glass plate 

MO = t → thickness of film corresponding to order ring. 

O
/
M = R – t 

From the geometry of the figure. 

 XM.MO = ML
2
 

Or (2R –t).t = rn
2
 

The film is a thin film and radius of curvature of the convex surface of the plano convex lens is 

high. So :     t << 2R, which gives: 

 2Rt = rn
2
   ………………………………………………….(1.55) 

So rn = √2Rt   ……………………………………………….(1.56) 

To show that order of a fringe is directly proportional to the square of the radius 

Substituting the expression of thickness ‘t’ from equation to (1.55) to (1.54): 

 
�45�

6  = (2n + 1)
�

�      for maxima ……………………………………….(1.57) 

       = nλ for minima 

Equation (1.58) shows that the order of the fringe is directly proportional to the square of its 

radius. 

In terms of diameter Dn of the n
th

 fringe equation (1.57) becomes 

 
�%5�

76  = (2n + 1)
�

�      for maxima ……………………………………….(1.58) 

       = nλ for minima 
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Fig. 5.14. Graph of Dn
2
 vs. n. 

If a graph of Dn
2
 is plotted against order number ‘n’ then it is found that both for maxima and 

minima the slope of the graph is:  

 m
/
 = 

76�
�

    ……………………………………..(1.59) 

For maxima the Y intercept of the graph is 

 Y0 = 
�6�
�

    …………………………………………………….(1.60) 

The graph for minima passes through the origin. 

 

Fringe width 

Fringe width is the se[aration betweem successive maxima or successive minima. Hence fringe 

width ‘β’ will be the difference of radius betweem successive maxima or successive minima. 

 β = r9)� −  r9    …………………………………………………(1.61) 

 Let rm and rm+1 be the radii of the m
th

 and (m+1)
th

 ring respectively. The corresponding 

diameters are Dm and   Dm+1. Using equation (1.57) 

 
�4:�

6  = mλ  for  m
th

 minima 

 
�4;<��

6   = (m+1)λ       for (p+m)
th

 minima 

Subtracting one from the other 

 
��4;<�� -4;� � 

6   = λ 

Or 
=(4;<�- 4;)(4;<�) 4;)

6  = λ 

As the m
th

 and (m+1)
th

 fringes are very close to each other hence:   r9)� +  r9 ≈ 2rm  =  Dm 



This gives  
=(4;<�- 4;)%;

6    = λ 

Or  r9)� −  r9  =  6�
�%;

 

Or  β =  
6�
�%;

      …………………………………………..(1.62) 

The expression for fringe width shows that fringe width inversely proportional to the fringe 

diameter. So the fringe width decreases as ring diameter increases. 

 

Measurement of unknown wavelength of light using Newton’s rings. 

The experimental arrangement shown in Fig. for formation of newtom’s ring is used with air 

film for which refractive index µ = 1. The microscope M is focussed to visualise the Newton’s 

rings. The microscope has a micrometer scale attached with it. By shifting the position of the 

microscope along the rings, the diameters Dp and Dp+m of the p
th

 and (p+m)
th

 dark rings 

respectively are measured using the readings taken from the micrometer scale.  

For p
th

 ring:  
%:�

76  =  pλ     ……………………………….(1.63) 

For (p+m)
th

 ring: 
%:<;�

76   =  (p+m)λ       …………………………..(1.64) 

Substracting equation (5.29) from (5.30) 

   
%:<;� - %:�

76    = mλ 

Or   λ = 
%:<;� - %:�

769        …………………………….(1.65) 

‘m’ can be obtained by counting the fringes. The radius of curvature ‘R’ of the plano convex lens 

can be measured by using a spherometer. Substituting all of them in equation (1.65) the value 

of wavelength ‘λ’ can be calculated. 

Graphical method: The values of Dn for different values of ‘n’ are measured. Dn
2
 is plotted 

against ‘n’ The slope of the graph ‘m
/
’ is calculated 

 m
/
 = 

76�
�

    = 4Rλ    for air film 

Or λ = 
>/

7@        . …………………………………….(1.66) 



The radius of curvature ‘R’ of the plano convex lens can be measured by using a spherometer, 

which on substitution in equation (1.66) gives the value of λ. Use of bright fringes also gives the 

same result. 

If the wave length of light ‘λλλλ’used is known the radius of curvature of the plano convex lens 

can be determined from equation (1.65) or (1.66) 

 

Measurement of refractive index of a liquid using Newton’s rings. 

The Newton’s ring experiment is first performed with air film between the plano convex lens 

and glass plate. The microscope M is focussed to visualise the Newton’s rings. The microscope 

has a micrometer scale attached with it. By shifting the position of the microscope along the 

rings, the diameters Dp and Dp+m of the p
th

 and (p+m)
th

 dark rings respectively are measured 

using the readings taken from the micrometer scale. As before we get  

 
%:<;� - %:�

76    = mλ 

Or DB)9� −  DB�  = 4Rmλ      ………………………………………………………(5.33) 

The experiment is again performed in a similar manner, after filling the space between the 

plano convex lens and glass plate with the liquid whose refractive index is to be measured. The 

film will now have a refractive index ‘µ’  Let the diameters of the p
th

 and (p+m)
th

 ring be 

measured as before. Let D
/
p and D

/
p+m be the corresponding diameters. Hence  

 
%/:<;

� -%/:
�

7�6    = mλ 

Or D/B)9
� − D/B

�
  = 4µRmλ   ……………………………………………………….(5.34) 

From equation (5.33) and (5.34) 

 µ = 
D/p+m

2
−D/p

2

Dp+m2 − Dp2
        ……………………………………………………(5.33) 

However if λ is known  one can use equation (5.34) to calculate µ 

 

   


