
UNCERTAINTY PRINCIPLE 

Introduction 

In quantum mechanics a particle can be 

represented by a wave packet of a linear extension ∆x (in 

one dimensional approach) surrounding the particle, 

which moves with the group velocity. Since the particle 

may be anywhere within the wave packet, it may be found 

anywhere within the limits ∆x. Hence it can be said that 

the position of the particle is uncertain by an amount ∆∆∆∆x.  

  

Since a wave packet is formed by superposition of a large number of waves of different 

wavelength, hence the exact  wavelength of a wave packet cannot be predicted with precision. It 

can only be said that the wavelength lies within a certain range λ to λ + dλ. The momentum of 

the particle being:    p = 
�

�
,  hence due to uncertainty in wavelength the momentum is also 

uncertain within a range p to p + dp,  dp being the momentum uncertainty. 

Now : p = 
�

�
 .   Hence dp = - 

�

�� ��. Ignoring the negative sign the momentum uncertainty is 

given by: 

  ∆p =
�

�� ∆λ.   ……………………………………..(7.1) 

This shows that the momentum uncertainty is directly proportionate to the wavelength 

uncertainty. If the number of superposed waves in the wave packet and their range of 

wavelength be increased, then the linear spread ∆x of the wave packet decreases leading to a 

reduction in position uncertainty. When ∆λ → ∞, ∆p → ∞ but ∆x → 0, i.e the wave packet 

reduces to a point and there is no uncertainty in the position of the particle.   

 On the other hand, for a definite  λ, ∆λ = 0  ∆p = 0. So there is no uncertainty in momentum 

of the particle. But in this case ∆x → ∞ and the uncertainty in position is limitless. Thus it is 

evident that the uncertainty in position decreases at the expense of certainty of momentum 

and vice versa. Heisenberg made an elaborate analysis of this uncertainty or indeterminacy and 

proposed the uncertainty principle. 

 

 

∆x 



Heisenberg uncertainty principle. 

It is fundamentally impossible to determine the position and momentum of a particle 

simultaneously with absolute precision. If the uncertainty in one decreases themn that of the 

other will increase, the minimum value of the uncertainty product being ‘h’, the Planck’s 

constant. 

  ∆x.∆p  ≥  h    ……………………………………………(7.1) 

Implication of uncertainty principle 

At the macroscopic level, where we deal with particles of considerably large size and finite 

velocities, where any type of observation and measurement maintains the particle undisturbed. 

And the uncertainties can be ignored since ‘h’ is extremely small. However at the microscopic 

level, where atomic and sub-atomic particles are dealt with, any type of observation and 

measurement disturbs the particle. So an unavoidable indeterminacy will be associated with the 

measurements. 

  The uncertainty product ∆x.∆p is independent of the quantities like mass, wavelength 

etc. The minimum value of the uncertainty product ‘h’ is an universal constant. So the 

uncertainty principle is a fundamental law of nature. 

 The consequence of this inherent and unavoidable indeterminacy of observational results in 

micro world is that – only the concept of probability of getting a particular value for a physical 

quantity can be considered. The exact value cannot be predicted. 

Other forms of uncertainty relation 

The uncertainty of observation and measurement of a physical quantity is not limited only to 

position and momentum measurements. It can be extended to any two canonically conjugate 

quantities, for e.g. Energy and time, angular momentum and angular position etc. 

1) Energy and time: For a particle of mass ‘m’ moving along X axis with momentum ‘p’ the 

energy is given by: 

  E = 
��

�

��
  ∆E = 

�	



�p�   = v��p �      ………………(7.2) 

Where vx is the velocity of the particle in X direction.  

  Vx = 
��

��
  which gives  ∆x.∆px =        ……………………………(7.3) 

Equation (7.3) is an alternative form of uncertainty principle. 

∆E.∆t  ≥  h 



2) Angular momentum and angular position 

The energy E of a particle rotating about an axis with angular speed ‘ω’ moment of inertia is 

given by: 

 E = 
�

�
Iω2

  ∆E = 
�

�
. 2�I.�� = ω.I.∆ω  …………………………..(7.4) 

As I is independent of ω and depends only on the mass and dimension of the particle  

 ∴∴∴∴  I∆ω  =  ∆(Iω) = ∆L, where L = Iω = angular momentum of the rotating particle.  

This gives:  ∆E = ω∆L   ……………………………………………….(7.5) 

The angular position with respect to an initial reference point is = φ =ωt  ∆φ = ω∆t  …………(7.6) 

From equation (7.5) and (7.6) : ∆L.∆φ = 
∆�

�
.��t = ∆E.∆t   …………………………….(7.7) 

Substituting (7.3) in (7.7):      ……………………….(7.8) 

Equation (7.8) is another alternative form of uncertainty principle. 

Some illustrations of uncertainty principle 

1. γγγγ ray microscope thought experiment 

Let position and momentum 

determination of an electron be considered 

using an imaginary γ ray microscope of high 

resolving power (imaginary, as optical parts 

cannot focus γ rays) with objective O. The 

smallest distance resolved by the 

microscope is: 

∆x = 
�

�����(�)
 , where µ is the 

refractive index of the concerned medium  

and 2θ is the angle subtended by the objective lens at the position of the electron. λ is the 

wavelength of the γ radiation. 

Refractive index for air is = 1, which gives: 

 ∆x = 
�

����(�)
    ………………………………….(7.9) 

∆L.∆φ ≥ h 

         O 
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Fig. 7.1.  Illustration of uncertainty relation – 

the γ ray microscope. 



Thus ∆x is the minimum  error in the measurement of electron. To reduce ∆x, the wavelength λ 

should be reduced i.e. shorter γ rays are required.   

 In order to measure the position of the electron, at least one γ ray photon, deflected by 

the electron from its initial direction should enter the objective. This photon imparts a 

momentum of 
��

�
 to the electron, which thereby recoils. As the scattered photon can enter the 

objective from any direction within an angle -θ to θ, hence the momentum of the electron is 

uncertain to that extent. Thus X-component of momentum of the electron ranges from                

- 
   ��

�
Sin� to +

��

�
Sin�. Hence the minimum uncertainty in x component of momentum is  

              ∆px = 
���

�
Sin�  =   

��

�
Sin�    ………………………………………………..(7.10) 

From equations (7.9) and (7.10) the minimum value of the uncertainty product is. 

 ∆x. ∆px = 
�

����(�)
 . 

��

�
Sin� = h ………………………………………….(7.11) 

This verifies Heisenberg’s uncertainty principle. 

2. Diffraction of electron beam at a slit. 
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Fig. 7.2. Illustration of uncertainty relation – Single slit diffraction of electron beam. 



The fig.(7.2) shows a single slit exposed to an electron beam. The width of the slit ∆∆∆∆x is the 

position uncertainty. For single slit diffraction most of the intensity is concentrated within the 

central maxima. Let ‘θ’ be the angle of diffraction corresponding to first minima.  Assuming that 

the secondary maximas tend to zero, almost all of the electrons will be scattered within an 

angle -θ to +θ on either side of direction of incidence. So if p be the momentum of the 

scattered electron then along a direction parallel  to the  width  of the slit,  p ranges from  -

pSinθ to  + pSinθ. So the momentum uncertainty is ∆∆∆∆px = 2pSinθθθθ.  If λ be the de Broglie 

wavelength of the electron then:  P = 
!

����
 , which gives 

 ∆px = 
��

�
Sin�    …………………………………….(7.12) 

Now, according to Fraunhofer diffraction theory the condition for minima is : 

 ∆xSinθ = nλ, where  n = order of fringe. 

For first minima n = 1, which gives 

 ∆xSinθ = λ    ……………………………………………..(7.13) 

Or ∆x = 
�

����
  ………………………………………………..(7.14) 

From equation (7.14) and (7.12) 

       ………………………….(7.15) 

 

As 2h is greater than ‘h’ it can be said that ∆∆∆∆x.∆∆∆∆px > h , which is in agreement with uncertainty 

principle.   

 

 

  

  

 

∆x. ∆px = 
�

����
 . 

��

�
Sin� = 2h 


