
Introduction to MATLAB-3

For B.Sc. Sem-4 ELTA Sec-2

Script files
• In this section we show you how to store commands in a file.

Such MATLAB command files are known as script files. They
are stored with the .m extension. In MATLAB files with the .m
extension are also called M-files. All script files are M-files,
but not all M-files are script files as you will see later (for
example, MATLAB functions are also stored in .m files)

• From the menu choose File then New then M-file.• From the menu choose File then New then M-file.

• You are now in the MATLAB Editor/Debugger.

• Type the following lines in the new file window. Note that the
file is still called 'Untitled'.

• % Add two matrices and display the result A = [1, 1; 2, 2]

• B = [2, 2; 3, 3]

• D = A + B

• disp('The result is '); disp(D);

Script files

• The first line is a comment written to explain what your program
does. MATLAB ignores everything on a line after a %-character.
Note that comments are displayed in a different colour so you can
directly recognize them. It is very important to write adequate
comments so that other people who need to use your program can
understand it.

•

• You may have noticed that when closing brackets the two matching • You may have noticed that when closing brackets the two matching
brackets are identified (usually by flashing or underscoring them).
This is useful in cases where you have several sets of brackets: you
can easily check if all brackets are matched up.

•

• The disp command is used to display output strings on your screen,
as in disp('the result is ') and also to display variables as in disp(D) .
The text that will be displayed is shown in a different colour. Note
that we can display strings or variables but not at the same time. So
the command disp('the result is ',D); is not accepted.

Save this file.

• We will now save this file.

• Choose File then Save As from the menu. The current
directory (which should be the directory you just
created) is automatically selected. Save the file as
addmat.m .addmat.m .

• Go back to the command window and type addmat to
run the file (note that you should not type the

• .m extension!). If MATLAB gives an error saying that it
can not find addmat, make sure that the directory in
which the addmat.m file is stored and MATLAB’s
current directory are one and the same.

Relational operators

• MATLAB has 6 relational operators to make comparisons
between variables. These are

•

• < is less than

• <= is less than or equal to

• > is greater than• > is greater than

• >= is greater than or equal to

• == is equal to

• ~= is not equal to

•

• Note that the is equal to operator consists of two equal
signs and not a single = sign as you might expect. We’ll play
around with these relational operators for a little while.

Relational operators
• Go back to the Command Window. Set up the scalars q=10, w=10, and

e=20.

• In MATLAB a logical expression has two possible values that are not

‘true’ or ‘false’ but numeric, i.e. 1 if the expression is true and 0 if it is

false.

• Type w< e to see that the result is given the value of 1 because w is

indeed less than e. Now type q==e. The == operator checks if two

variables have the same value. Therefore the answer is 0 in this case.variables have the same value. Therefore the answer is 0 in this case.

• Relational operations are performed after arithmetic operations.

For example q == w-e results in 0. Parentheses can be used to

override the natural order of precedence. So (q==w) - e results in -19.

• The relational operators can be used for all elements of vectors

simultaneously.

• Create the vectors x and y by typing x=[-1, 3, 9] and y=[-5, 5, 9] . Now

type

• z= (x < y) . The i-th element of z is 1 if x(i) < y(i), otherwise it is 0. So, the

answer is the vector with elements 0, 1, and 0.

Logical operators

• MATLAB uses three logical operators. These are

• and &

• or |

• not ~
For & (and) to give a true result both expressions
either side of the & must be true. The logical
expression
either side of the & must be true. The logical
expression

• e> 0 is true and the logical expression q<0 is false.
So the logical expression (e>0) & (q<0) is false. For
| (or) to give a true result only one of the
expressions either side of the | needs to be true.

• Type (e>0) | (q<0) . Is the result as expected?

•

Logical operators

• The ~ (not) operator changes a logical expression

from 0 to 1 and vice versa. So result = ~(q<0)

would be 1. The operator ~ has a high priority. So,

to avoid mistakes, put whatever expression you to avoid mistakes, put whatever expression you

want to negate in parentheses, as we did here.

• The operations & and | are performed after the

relational operations,<>== etc.

• Just as with relational operators we can use

logical operators for vectors or matrices.

The ‘if' statements

• The if-statement starts with if followed by a
condition, usually a relational operation, and is
finished with an

• end; command. For example (taken from a
soccer game simulator)soccer game simulator)

• if score ~= 0

• disp('GGOOAAALLL – the score is '); disp(score);

• end;

• The body of this if-statement consists of two lines
and both will be carried out if the score is not
equal to zero. We can include as many lines in a
body as we want.

‘If’ with else statement

• We could also write a message if the score is zero.
Instead of writing a separate if-statement for this case
we combine it with the previous one in

• if score ~= 0

• disp('GGOOAAALLL – the score is'); disp(score);
else end;

• disp('GGOOAAALLL – the score is'); disp(score);
else end;

• disp('darn – kick too soft');

If the score is not zero the first body will be carried out
(the one immediately following the first condition
statement). Otherwise the command in the body after
the else-statement is carried out.

Using ‘elseif’ statement

• if score == 1

• disp('FFFIIIRRRSSSTTT GGGOOAAALLL');

• elseif score > 1

• disp('We are on a roll');• disp('We are on a roll');

else end;

• disp('darn – kick too soft');

The elseif statement allows us to include more

options.

Nested ‘if’ Statement

• another example where now we check if a penalty kick will
enter the goal (our keeper has a reaction time of 0.5
seconds):

• if time < 0.5

• % compute the height of the ball as it reaches the goal
height = initialS*time*sin(angle) – 0.5*g*time^2;height = initialS*time*sin(angle) – 0.5*g*time^2;

• score = score + 1;

• end;

• end;

• From this example we see that it is possible to have nested
if-statements, that is if- statements inside other if-
statements. Now we get two end statements, one for each
if. It is VERY IMPORTANT TO USE INDENTATION!!! Otherwise
it is hard to figure out which end belongs to which if.

The 'for' loop
• Let’s start with a very simple example. We will create a

vector with 3 random angles between 0 and !, compute the
cosine of each angle, and display it.

• The program is

• angle = pi*rand(3,1);

• for k=1:3
cosangle = cos(angle(k));cosangle = cos(angle(k));

disp(cosangle);

• end;

• Note

• k is called the loop-variable.

• the loop is ended as required by the end; statement

• the body is the code between the for-statement and the
corresponding end;

• the body is indented to make it easy to see what’s
happening inside the loop

Using ‘for’ loop
• Suppose we want to find the maximum element of a vector x

with 4 elements that are random numbers between 0 and 1.

• We store the maximum value in the variable called maxval. At
the start of our code we initialize maxval to

• Then we access all elements of the vector x one-by-one and
each time check if the element is larger than maxval. If so, we
set maxval to this new value. Accessing the elements can be
done in a for-loop:

• x = rand(4,1); maxval = 0;• x = rand(4,1); maxval = 0;

• for k=1:4

• if (x(k) > maxval)

• maxval = x(k);

• end; end;

• disp(maxval);

• Note that both the if-statement and the for-loop must have a
corresponding end statement. We used indentation and
therefore it is easy to see which end belongs to which
statement.

Nested for-loops

• Just as we can have if-statements inside for-loops
we can have for-loops inside for-loops. We
compute the exponential of each element of a
2x2 matrix A.

A = rand(2,2); A = rand(2,2);

for k=1:2

for m=1:2

exponential = exp(A(k,m));

display(exponential);

• end;

• end;

Explanation of nested for loop

1. What happens? Let’s go through the program step-by-
step. You can do this in the debugger as well. We will call
the k-loop the outer loop and the m-loop the inner loop.

2. MATLAB enters the outer loop and sets k to 1.

3. At the next line, MATLAB reaches the inner for-loop and
sets m to 1.sets m to 1.

4. It computes the exponential of A(1,1) and displays it.

5. It reaches the end; statement corresponding to the inner-
loop.

6. Since it has not completed the inner loop yet, MATLAB
jumps back to the for-statement of the inner loop and
sets m to 2.

7. It computes the exponential of A(1,2) and displays it.

Explanation of nested for loop
8. It reaches the end; statement of the inner-loop.

9. It realizes that it has completely carried out the inner
loop and continues to the next line in the program
which is the end; statement of the outer-loop.

10. Since it has not completed the outer loop yet,
MATLAB jumps back to the for-statement of the outer MATLAB jumps back to the for-statement of the outer
loop and sets k to 2.

11. It goes to the inner loop and passes through it twice
as above for k=1, computing the exponential of A(2,1)
and displaying it, and then computing A(2,2) and
displaying it.

12. It then reaches the end; statement of the outer loop
once more, realizes it is done and stops.

‘While’ loops

• In a for-loop we repeat the statements inside
the body a fixed number of times. But often we
want to repeat some calculation not for a fixed
number of times but until some condition is
satisfied. Let's look at a very simple example.

x = 7;x = 7;

while x > 0

x = x-4;

disp(x);

end;

disp('Done');

How does ‘while’ loop works?
1. The variable x is equal to 7 initially.

2. Since x > 0 MATLAB enters the body of the while loop and subtracts 4 from

x, which is now equal to

3. MATLAB displays the new value of x.

4. MATLAB reaches the end; statement and jumps back to the while-

condition (while x>0).

5. Again x > 0 so MATLAB goes into the while-loop, sets x to –1 and displays

it.it.

6. MATLAB reaches the end; statement and jumps back to the while-

condition.

7. Now x is smaller than 0, so MATLAB will not enter the body of the while-

loop but jumps to the final display statement and writes "Done" to screen.

In this example we must set x to a value (initialize) before we start the

while-loop. Otherwise the condition in the while-statement can not be

checked. So, MAKE SURE YOU INITIALIZE.

