MATHEMATICS-HONOURS PAPER- CC4

Cyclic group

Definition: A group *G* is called cyclic if there is an element *a* in *G* such that

 $G = \{a^n \mid n \in \mathbb{Z}\}$. Such an element *a* is called a generator of *G*.

we may indicate that G is a cyclic group generated by a by writing $G = \langle a \rangle$.

In additive notation, $G = \{ na | n \in \mathbb{Z} \} = <a>$.

Observation:

- 1. *a*must have an order.
- 2. We know that if \circ (*a*) = *n* then {*a*, *a*², ..., *a*^{*n*-1}, *a*^{*n*}(= *e*)} are all distinct elements. Hence *G* can be finite/infinite.
 - \circ (*a*) is finite iff *G* is finite
 - \circ (*a*) is infinite iff*G* is infinite
- 3. $|G| = |\langle a \rangle| = \circ (a)$

Questions:

- 4. Do you think $G = \langle a^{-1} \rangle$? If it is true can we say a^{-1} is also a generator?
- 5. Do you think cyclic implies abelian here?
- 6. What about the countability of *G*? [hint: Z is countable]

Example:

- 1. (Z, +) is a cyclic group as Z = <1 >.
- 2. $(Z_n, +)$ is a cyclic group as $Z_n = <\overline{1} >$.

Exercise : [hint: search for an element a and verify $G = \langle a \rangle$.]

- 1. Z_8 is a cyclic group.
- 2. U(10) is a cyclic goup.

Theorem: Let $\langle a \rangle$ be a finite cyclic group. Then $|\langle a \rangle| = \circ (a)$.

Proof: see Theorem 2.12.3 in S.K.Mapa

Theorem: Let $\langle a \rangle$ be an infinite cyclic group. Then $|\langle a \rangle| = \circ (a)$.

Proof: left to the reader.

MATHEMATICS-HONOURS PAPER- CC4

Theorem: Let $G = \langle a \rangle$ be a finite cyclic group of order n. Then for a positive integer k, a^k is also a generator of G iff gcd(k, n) = 1.

Proof: Theorem 2.12.6 in S.K.Mapa

Corollary: Total number of generator of a finite cyclic group G of order n is $\phi(n)$.

Exercise: Find all generators of Z_{10} .

Theorem: Every subgroup of a cyclic group is cyclic.

Proof: see any book.

Theorem: A cyclic group of finite order *n* has one and only one subgroup of order *d* for every positive divisor *d* of *n*.

Proof: see any book.

Exercise:

- 1. Find all subgroups of (Z, +). [worked out in S.K.Mapa p114]
- 2. Prove that (Q, +) is non cyclic. Deduce that (R, +) is non cyclic.
- 3. Prove that $(Q^*, .)$ is non cyclic.
- 4. Let G be a group such that |G| = mn, m > 1, n > 1. Show that G has a non trivial subgroup.
- 5. Let $G = \langle a \rangle$ be a cyclic group of order 30. Determine $\langle a^5 \rangle$, $\langle a^2 \rangle$.
- 6. A cyclic group of prime order has no proper non trivial subgroup.
- 7. If an abelian group *G* contains an element of order 5, prove that *G* must be a cyclic group.