Cyclic group

Definition: A group G is called cyclic if there is an element a in G such that
$G=\left\{\mathrm{a}^{\mathrm{n}} \mid \mathrm{n} \in \mathbb{Z}\right\}$. Such an element a is called a generator of G.
we may indicate that G is a cyclic group generated by a by writing $\mathrm{G}=\langle a\rangle$.
In additive notation, $G=\{n a \mid n \in \mathbb{Z}\}=\langle a\rangle$.

Observation:

1. amust have an order.
2. We know that if $\circ(a)=n$ then $\left\{a, a^{2}, \ldots, a^{n-1}, a^{n}(=e)\right\}$ are all distinct elements. Hence G can be finite/infinite.

- (a) is finite iff G is finite
- (a) is infinite iff G is infinite

3. $|G|=|\langle a\rangle|=\circ(a)$

Questions:

4. Do you think $G=<a^{-1}>$? If it is true can we say a^{-1} is also a generator?
5. Do you think cyclic implies abelian here?
6. What about the countabilityof G ? [hint: Z is countable]

Example:

1. $(Z,+)$ is a cyclic group as $Z=\langle 1\rangle$.
2. $\left(Z_{n},+\right)$ is a cyclic group as $Z_{n}=\langle\overline{1}\rangle$.

Exercise : [hint: search for an element a and verify $G=\langle a\rangle$.]

1. Z_{8} is a cyclic group.
2. $U(10)$ is a cyclic goup.

Theorem: Let $<a>$ be a finite cyclic group. Then $|<a>|=\circ(a)$.
Proof: see Theorem 2.12.3 in S.K.Mapa
Theorem: Let $<a>$ be an infinite cyclic group. Then $|<a>|=\circ(a)$.
Proof: left to the reader.

MATHEMATICS-HONOURS

PAPER-CC4

Theorem: Let $G=\langle a\rangle$ be a finite cyclic group of order n. Then for a positive integer k, a^{k} is also a generator of G iff $\operatorname{gcd}(k, n)=1$.

Proof: Theorem 2.12.6 in S.K.Mapa
Corollary: Total number of generator of a finite cyclic group G of order n is $\phi(n)$.
Exercise: Find all generatorsof Z_{10}.
Theorem: Every subgroup of a cyclic group is cyclic.
Proof: see any book.
Theorem: A cyclic group of finite order n has one and only one subgroup of order d for every positive divisor d of n.

Proof: see any book.

Exercise:

1. Find all subgroups of $(Z,+)$. [worked out in S.K.Mapa p114]
2. Prove that $(Q,+)$ is non cyclic. Deduce that $(R,+)$ is non cyclic.
3. Prove that $\left(Q^{*},.\right)$ is non cyclic.
4. Let G be a group such that $|G|=m n, m>1, n>1$. Show that G has a non trivial subgroup.
5. Let $G=\langle a\rangle$ be a cyclic group of order 30. Determine $\left\langle a^{5}\right\rangle,\left\langle a^{2}\right\rangle$.
6. A cyclic group of prime order has no proper non trivial subgroup.
7. If an abelian group G contains an element of order 5 , prove that G must be a cyclic group.
