CHAPTER 2

INFINITE SUMS (SERIES)

Lecture Notes

We extend the notion of a finite sum $\sum_{k=1}^{n} a_{k}$ to an INFINITE SUM which we write as

$$
\sum_{n=1}^{\infty} a_{n}
$$

as follows.

DEFINITION 1

For a given sequence
$\left\{a_{n}\right\}_{n \in N-\{0\}}$, i.e the sequence

$$
a_{1}, a_{2}, a_{3}, \ldots . a_{n}, \ldots .
$$

we form a following (infinite) sequence

$$
S_{1}=a_{1}, S_{2}=a_{1}+a_{2}, \ldots, S_{n}=\sum_{k=1}^{n} a_{k}, \ldots \ldots
$$

We use it to define the infinite sum as follows.

DEFINITION 1

If the limit of the sequence $\left\{S_{n}\right\}$ exists we call it an INFINITE SUM of the sequence $\sum_{k=1}^{n} a_{k}$.

We write it as

$$
\Sigma_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \Sigma_{k=1}^{n} a_{k} .
$$

The sequence $\left\{S_{n}=\sum_{k=1}^{n} a_{k}\right\}$ is called its sequence of partial sums.

DEFINITION 2

If the limit $\lim _{n \rightarrow \infty} S_{n}$ exists and is finite, i.e.

$$
\lim _{n \rightarrow \infty} S_{n}=S
$$

then we say that the infinite sum $\sum_{n=1}^{\infty} a_{n}$ CONVERGES to S and
we write it as

$$
\sum_{n=1}^{\infty} a_{n}=S
$$

otherwise the infinite sum DIVERGES.

In a case that

$$
\lim _{n \rightarrow \infty} S_{n}
$$

exists and is infinite, i.e.

$$
\lim _{n \rightarrow \infty} S_{n}=\infty,
$$

we say that the infinite sum

$$
\sum_{n=1}^{\infty} a_{n}
$$

DIVERGES to ∞ and
we write it as

$$
\Sigma_{n=1}^{\infty} a_{n}=\infty .
$$

In a case that $\lim _{n \rightarrow \infty} S_{n}$ does not exist we say that the infinite sum $\sum_{n=1}^{\infty} a_{n}$ DIVERGES.

Observation 1 In a case when all elements of the sequence $\left\{a_{n}\right\}$ are equal 0 starting from a certain $k \geq 1$ the infinite sum becomes a finite sum, hence the infinite sum is a generalization of the finite one, and this is why we keep the similar notation.

EXAMPLE 1 The infinite sum of a geometric sequence $a_{n}=x^{k}$ for $x \geq 0$, i.e.

$$
\sum_{n=1}^{\infty} x^{n}
$$

converges if and only if $|x|<1$ because

$$
\begin{gathered}
\Sigma_{k=1}^{n} x^{k}=S_{n}=\frac{x^{n+1}-x}{x-1}, \text { and } \\
\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \frac{x}{x-1}\left(x^{n}-1\right)=\frac{x}{x-1} \text { iff }|x|<1,
\end{gathered}
$$

hence

$$
\Sigma_{n=1}^{\infty} x^{k}=\frac{x}{x-1} .
$$

EXAMPLE 2 The series $\sum_{n=1}^{\infty} 1$ DIVERGES to ∞ as $S_{n}=\sum_{k=1}^{n} 1=n$ and

$$
\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} n=\infty
$$

EXAMPLE 3 The infinite sum $\Sigma_{n=1}^{\infty}(-1)^{n}$ DIVERGES.

EXAMPLE 4 The infinite sum

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{1}{(k+1)(k+2)} \text { CONVERGES and } \\
\sum_{n=1}^{\infty} \frac{1}{(k+1)(k+2)}=1
\end{gathered}
$$

Proof: first we evaluate $S_{n}=\sum_{k=1}^{n} \frac{1}{(k+1)(k+2)}$ as follows.

$$
\begin{gathered}
S_{n}=\sum_{k=1}^{n} \frac{1}{(k+1)(k+2)}=\sum_{k=1}^{n} k \frac{-2}{}= \\
-\left.\frac{1}{x+1}\right|_{0} ^{n+1}=-\frac{1}{n+2}+1 \text { and } \\
\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty}-\frac{1}{n+2}+1=1 .
\end{gathered}
$$

DEFINITION 3 For any infinite sum (series) $\sum_{n=1}^{\infty} a_{n}$ a series $r_{n}=\sum_{m=n+1}^{\infty} a_{m}$ is called its n-th REMINDER.

FACT If $\sum_{n=1}^{\infty} a_{n}$ converges, then so does its n-th REMINDER $r_{n}=\Sigma_{m=n+1}^{\infty} a_{m}$.

Proof: first, observe that if $\sum_{n=1}^{\infty} a_{n}$ converges, then for any value on n so does
$r_{n}=\sum_{m=n+1}^{\infty} a_{m}$ because

$$
\begin{gathered}
r_{n}=\lim _{n \rightarrow \infty}\left(a_{n+1}+\ldots+a_{n+k}\right)= \\
\lim _{n \rightarrow \infty} S_{n+k}-S_{n}=\Sigma_{m=1}^{\infty} a_{m}-S_{n} .
\end{gathered}
$$

So we get

$$
\begin{gathered}
\lim _{n \rightarrow \infty} r_{n}=\Sigma_{m=1}^{\infty} a_{m}-\lim _{n \rightarrow \infty} S_{n}= \\
\Sigma_{m=1}^{\infty} S_{m}-\sum_{n=1}^{\infty} a_{n}=S-S=0 .
\end{gathered}
$$

General Properties of Infinite Sums

THEOREM 1
If $\sum_{n=1}^{\infty} a_{n}$ converges, then

$$
\lim _{n \rightarrow \infty} a_{n}=0
$$

Proof: observe that $a_{n}=S_{n}-S_{n-1}$ and hence $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} S_{n}$ The $-\lim _{n \rightarrow \infty} S_{n-1}=0$, as $\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} S_{n-1}$.

REMARK The reverse statement to the theorem 1

$$
\text { If } \lim _{n \rightarrow \infty} a_{n}=0 \text {. then } \sum_{n=1}^{\infty} a_{n} \text { converges }
$$

is not always true. There are infinite sums with the term converging to zero that are not convergent.

EXAMPLE 5 The infinite HARMONIC sum

$$
H=\Sigma_{n=1}^{\infty} \frac{1}{n}
$$

DIVERGES to ∞, i.e.

$$
\sum_{n=1}^{\infty} \frac{1}{n}=\infty
$$

but $\lim _{n \rightarrow \infty} \frac{1}{n}=0$.

DEFINITION 4 Infinite sum

$$
\sum_{n=1}^{\infty} a_{n}
$$

is BOUNDED if its sequence of partial sums

$$
S_{n}=\sum_{k=1}^{n} a_{k}
$$

is BOUNDED; i.e. there is a number M such that

$$
\left|S_{n}\right|<M, \text { for all } n \leq 1, n \in N .
$$

FACT 2 Every convergent infinite sum is bounded.

THEOREM 2 If the infinite sums

$$
\sum_{n=1}^{\infty} a_{n}, \sum_{n=1}^{\infty} b_{n}
$$

CONVERGE, then the following properties hold.

$$
\begin{gathered}
\Sigma_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=\Sigma_{n=1}^{\infty} a_{n}+\Sigma_{n=1}^{\infty} b_{n}, \\
\Sigma_{n=1}^{\infty} c a_{n}=c \Sigma_{n=1}^{\infty} a_{n}, c \in R .
\end{gathered}
$$

Alternating Infinite Sums

DEFINITION 5 An infinite sum

$$
\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}, \text { for } a_{n} \geq 0
$$

is called ALTERNATING infinite sum (alternating series).

EXAMPLE 6 Consider

$$
\sum_{n=1}^{\infty}(-1)^{n+1}=1-1+1-1+\ldots
$$

If we group the terms in pairs, we get

$$
(1-1)+(1-1)+\ldots=0
$$

but if we start the pairing one step later, we get

$$
1-(1-1)-(1-1)-\ldots . .=1-0-0-0-\ldots=1
$$

It shows that grouping terms in a case of infinite sum can lead to inconsistencies (contrary to the finite case). Look also example on page 59. We need to develop some strict criteria for manipulations and convergence/divergence of alternating series.

THEOREM 3 The alternating infinite sum

$$
\sum_{n=1}^{\infty}(-1)^{n+1} a_{n},\left(a_{n} \geq 0\right)
$$

such that

$$
a_{1} \geq a_{2} \geq a_{3} \geq \ldots . \text { and } \lim _{n \rightarrow \infty} a_{n}=0
$$ always CONVERGES.

Moreover, its partial sums

$$
S_{n}=\sum_{k=1}^{n}(-1)^{n+1} a_{n}
$$

fulfil the condition

$$
S_{2 n} \leq \Sigma_{n=1}^{\infty}(-1)^{n+1} a_{n} \leq S_{2 n+1}
$$

Proof: observe that the sequence of $S_{2 n}$ is increasing as

$$
S_{2 n+2}=S_{2 n}+\left(a_{2 n+1}-a_{2 n+2}\right.
$$

and

$$
a_{2 n+1}-a_{2 n+2} \geq 0,
$$

i.e.

$$
S_{2 n+2} \geq S_{2 n}
$$

The sequence of $S_{2 n}$ is also bounded as

$$
S_{2 n}=a_{1}-\left(\left(a_{2}-a_{3}\right)+\left(a_{4}-a_{5}\right)+\ldots a_{2 n}\right) \leq a_{1} .
$$

We know that any bounded and increasing sequence is is convergent, so we proved that $S_{2 n}$ converges.

Let denote $\lim _{n \rightarrow \infty} S_{2 n}=g$.
To prove that

$$
\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}=\lim _{n \rightarrow \infty} S_{n}
$$

converges we have to show now that

$$
\lim _{n \rightarrow \infty} S_{2 n+1}=g
$$

Observe that

$$
S_{2 n+1}=S_{2 n}+a_{2 n+2}
$$

and we get

$$
\lim _{n \rightarrow \infty} S_{2 n+1}=
$$

$$
\lim _{n \rightarrow \infty} S_{2 n}+\lim _{n \rightarrow \infty} a_{2 n+2}=g
$$

as we assumed that

$$
\lim _{n \rightarrow \infty} a_{n}=0
$$

We proved that the sequence $\left\{S_{2 n}\right\}$ is increasing.

We prove in a similar way that the sequence $\left\{S_{2 n+1}\right\}$ is decreasing.

Hence we get

$$
S_{2 n} \leq \lim _{n \rightarrow \infty} S_{2 n}=g=\Sigma_{n=1}^{\infty}(-1)^{n+1} a_{n}
$$

and

$$
S_{2 n+1} \geq \lim _{n \rightarrow \infty} S_{2 n+1}=g
$$

and

$$
\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}=g
$$

i.e

$$
S_{2 n} \leq \Sigma_{n=1}^{\infty}(-1)^{n+1} a_{n} \leq S_{2 n+1}
$$

EXAMPLE 7

Consider the ANHARMONIC series

$$
\begin{gathered}
A H=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}= \\
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4} \ldots .
\end{gathered}
$$

Observe that $a_{n}=\frac{1}{n}$, and

$$
\frac{1}{n} \geq \frac{1}{n+1}
$$

i.e. $a_{n} \geq a_{n+1}$ for all n.

This proves that the assumptions of the theorem 3 are fulfilled for $A H$ and hence $A H$ CONVERGES.

In fact, it is proved (by analytical methods) that

$$
A H=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}=\ln 2
$$

EXAMPLE 8 A series (infinite sum)

$$
\begin{aligned}
& \Sigma_{n=0}^{\infty}(-1)^{n} \frac{1}{2 n+1} \\
& =1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7} \ldots \ldots
\end{aligned}
$$

CONVERGES, by Theorem 3.

Proof is similar to the one in the example 7).

It also is proved that

$$
\Sigma_{n=0}^{\infty}(-1)^{n} \frac{1}{2 n+1}=\frac{\pi}{4}
$$

THEOREM 4 (ABEL Theorem)

IF a sequence $\left\{a_{n}\right\}$ fulfils the assumptions of the theorem 3 i.e.

$$
\begin{gathered}
a_{1} \geq a_{2} \geq a_{3} \geq \ldots . \text { and } \\
\lim _{n \rightarrow \infty} a_{n}=0
\end{gathered}
$$

and an infinite sum (converging or diverging)

$$
\sum_{n=1}^{\infty} b_{n} \text { is bounded, }
$$

THEN the infinite sum

$$
\sum_{n=1}^{\infty} a_{n} b_{n}
$$

always converges.

Observe that Theorem 3 is a special case of theorem 4 when $b_{n}=(-1)^{n+1}$.

Convergence of Infinite Sums with Positive Terms

We consider now infinite sums with all its terms being positive real numbers, i.e.

$$
\begin{gathered}
S=\Sigma_{n=1}^{\infty} a_{n} \\
\text { for } a_{n} \geq 0, a_{n} \in R .
\end{gathered}
$$

Observe that if all $a_{n} \geq 0$, then the sequence $\left\{S_{n}\right\}$ of partial sums is increasing; i.e.

$$
S_{1} \leq S_{2} \leq \ldots \leq S_{n \ldots}
$$

and hence the limit

$$
\lim _{n \rightarrow \infty} S_{n}
$$

exists and is finite or is ∞. This proves the following theorem.

THEOREM 5

The infinite sum

$$
\begin{aligned}
& S=\Sigma_{n=1}^{\infty} a_{n}, \text { where } a_{n} \geq 0, a_{n} \in R \\
& \text { always CONVERGES, or DIVERGES to } \infty .
\end{aligned}
$$

THEOREM 6 (Comparing the series)

Let $\sum_{n=1}^{\infty} a_{n}$ be an infinite sum and $\left\{b_{n}\right\}$ be a sequence such that for all $n \in N$

$$
0 \leq b_{n} \leq a_{n} .
$$

If the infinite sum $\sum_{n=1}^{\infty} a_{n}$ converges then the sum $\sum_{n=1}^{\infty} b_{n}$ also converges and

$$
\sum_{n=1}^{\infty} b_{n} \leq \sum_{n=1}^{\infty} a_{n}
$$

Proof: we denote

$$
S_{n}=\sum_{k=1}^{n} a_{k}, T_{n}=\sum_{k=1}^{n} b_{k} .
$$

As $0 \leq b_{n} \leq a_{n}$ we get that also

$$
S_{n} \leq T_{n}
$$

But

$$
S_{n} \leq \lim _{n \rightarrow \infty} S_{n}=\Sigma_{n=1}^{\infty} a_{n}
$$

so also

$$
T_{n} \leq \sum_{n=1}^{\infty} a_{n}=S .
$$

The inequality

$$
T_{n} \leq \sum_{n=1}^{\infty} a_{n}=S
$$

means that the sequence $\left\{T_{n}\right\}$ is a bounded sequence with positive terms,
hence by theorem 5, it converges.

By the assumption that

$$
\sum_{n=1}^{\infty} a_{n}
$$

we get that

$$
\begin{gathered}
\Sigma_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}= \\
\lim _{n \rightarrow \infty} S_{n}=S
\end{gathered}
$$

We just proved that

$$
T_{n}=\sum_{k=1}^{n} b_{k}
$$

converges, i.e.

$$
\lim _{n \rightarrow \infty} T_{n}=T=\Sigma_{n=1}^{\infty} b_{n} .
$$

But also we proved that

$$
S_{n} \leq T_{n},
$$

hence

$$
\lim _{n \rightarrow \infty} S_{n} \leq \lim _{n \rightarrow \infty} T_{n}
$$

what means that

$$
\sum_{n=1}^{\infty} b_{n} \leq \sum_{n=1}^{\infty} a_{n}
$$

EXAMPLE 9

Let's use Theorem 5 to prove that the series

$$
\sum_{n=1}^{\infty} \frac{1}{(n+1)^{2}}
$$

converges.

We prove by analytical methods that it converges to $\frac{\pi^{2}}{6}$.

Here we prove only that it does converge.

First observe that the series below converges to 1, i.e.

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=1
$$

Consider

$$
\begin{gathered}
S_{n}=\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3} \ldots+\frac{1}{n(n+1)}= \\
\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\ldots\left(\frac{1}{n}-\frac{1}{n+1}\right)= \\
1-\frac{1}{n+1}
\end{gathered}
$$

so we get

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=\lim _{n \rightarrow \infty} S_{n}= \\
\lim _{n \rightarrow \infty}\left(1-\frac{1}{n+1}\right)=1 .
\end{gathered}
$$

Now we observe (easy to prove) that

$$
\begin{aligned}
& \frac{1}{2^{2}} \leq \frac{1}{1 \cdot 2}, \quad \frac{1}{3^{2}} \leq \frac{1}{1 \cdot 3}, \ldots . . \\
& \cdots \frac{1}{(n+1)^{2}} \leq \frac{1}{n(n+1)}, \ldots \ldots
\end{aligned}
$$

i.e. we proved that all assumptions if Theorem 5 hold, hence

$$
\sum_{n=1}^{\infty} \frac{1}{(n+1)^{2}}
$$

converges and moreover

$$
\Sigma_{n=1}^{\infty} \frac{1}{(n+1)^{2}} \leq \Sigma_{n=1}^{\infty} \frac{1}{n(n+1)}
$$

THEOREM 7 (D'Alambert's Criterium)

Any series with all its terms being positive real numbers, i.e.

$$
\sum_{n=1}^{\infty} a_{n}, \text { for } a_{n} \geq 0, a_{n} \in R
$$

converges if the following condition holds:

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}}<1 .
$$

Proof: let h be any number such that

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}}<h<1
$$

It means that there is k such that for any $n \geq k$ we have

$$
\frac{a_{n}}{a_{n+1}}<h \text { and } a_{n+1}<h a_{n} .
$$

Hence

$$
a_{k+1}<a_{k} h, \quad a_{k+2}=a_{k+1} h<a_{k} h^{2}, \ldots \ldots
$$

i.e. all terms a_{n} of

$$
\sum_{n=k}^{\infty} a_{n}
$$

are smaller then the terms of a converging (as $0<h<1$) geometric series

$$
\Sigma_{n=0}^{\infty} a_{k} h^{n}=a_{k}+a_{k} h+a_{k} h^{2}+\ldots .
$$

By Theorem 5 the series

$$
\sum_{n=1}^{\infty} a_{n}
$$

must converge.

THEOREM 7 (Cauchy's Criterium)

Any series with all its terms being positive real numbers, i.e.

$$
\sum_{n=1}^{\infty} a_{n}, \text { for } a_{n} \geq 0, a_{n} \in R
$$

CONVERGES if the following condition holds:

$$
\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}<1
$$

Proof: we carry the proof in a similar way as the proof of theorem 6 .

Let h be any number such that

$$
\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}<h<1
$$

It means that there is k such that for any $n \geq k$ we have $\sqrt[n]{a_{n}}<h$, i.e. $a_{n}<h^{n}$.

This means that all terms a_{n} of $\sum_{n=k}^{\infty} a_{n}$ are smaller then the terms of a converging (as $0<h<1$) geometric series

$$
\Sigma_{n=k}^{\infty} h^{n}=h^{k}+h^{k+1}+h^{k+2}+\ldots
$$

By Theorem 5 the series $\sum_{n=1}^{\infty} a_{n}$ must converge.

THEOREM 7 (Divergence Criteria)

Any series with all its terms being positive real numbers, i.e.

$$
\sum_{n=1}^{\infty} a_{n}, \text { for } a_{n} \geq 0, a_{n} \in R
$$

DIVERGES if

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}}>1 \\
& \text { or } \quad \lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}>1
\end{aligned}
$$

Proof:

observe that if

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}}>1
$$

then for sufficiently large n we have that

$$
\frac{a_{n}}{a_{n+1}}>1, \text { and hence } a_{n+1}>a_{n} .
$$

This means that the limit of the sequence $\left\{a_{n}\right\}$ can't be 0 .

By theorem 1 we get that $\sum_{n=1}^{\infty} a_{n}$ diverges.

Similarly, if

$$
\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}>1
$$

then then for sufficiently large n we have that

$$
\sqrt[n]{a_{n}}>1 \text { and hence } a_{n}>1,
$$

what means that the limit of the sequence $\left\{a_{n}\right\}$ can't be 0 .

By theorem 1 we get that $\sum_{n=1}^{\infty} a_{n}$ diverges.

Remark It can happen that for a certain infinite sum $\left.\sum_{n=1}^{\infty} a_{n}\right)$

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}}=1=\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}
$$

In this case our Divergence Criteria do not decide whether the infinite sum converges or diverges.

In this case we say that the infinite sum DOES NOT React on the criteria.

EXAMPLE 10

The Harmonic series

$$
H=\Sigma_{n=1}^{\infty} \frac{1}{n}
$$

does not react on D'Alambert's Criterium (Theorem 7) because

$$
\lim _{n \rightarrow \infty} \frac{n}{n+1}=\lim _{n \rightarrow \infty} \frac{1}{\left(1+\frac{1}{n}\right)}=1
$$

EXAMPLE 11

The series from example 9

$$
\sum_{n=1}^{\infty} \frac{1}{(n+1)^{2}}
$$

does not react on D'Alambert's Criterium (Theorem 7) because

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{(n+2)^{2}}=\lim _{n \rightarrow \infty} \frac{n^{2}+2 n+1}{n^{2}+4 n+1}= \\
\lim _{n \rightarrow \infty} \frac{1+\frac{2}{n}+\frac{1}{n^{2}}}{1+\frac{4}{n}+\frac{4}{n^{2}}}=1 .
\end{gathered}
$$

Remark

Both series

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

and

$$
\Sigma_{n=1}^{\infty} \frac{1}{(n+1)^{2}}
$$

do not react on D'Alambert's, but first in divergent and the second is convergent.

There are more criteria for convergence, most known are Kumer's criterium and Raabe criterium.

